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ABSTRACT 

 

Graphene fluoride is a two-dimensional fluorocarbon, and the wide-gap analogue of 

graphene.  Among chemical derivatives of graphene, graphene fluoride is unique in its ease of 

synthesis and stability, as well as the extensive study of its bulk form, graphite fluoride.  Only in 

the last few years, however, has graphene fluoride been isolated experimentally, and our 

understanding of its atomic and electronic structure, stability, reduction, and use as a platform for 

lithographic patterning is still limited.  In this dissertation, an ultra-high vacuum scanning 

tunneling microscope (UHV-STM) is employed for the characterization of exfoliated double-

sided graphene fluoride (ds-GF) and of single-sided graphene fluoride (ss-GF) on Cu foil.  We 

explore the structure and stability of each material and, in particular, identify ss-GF as a stable, 

well-ordered, wide-gap semiconductor.  This dissertation offers the first atomic-resolution study 

of this novel material, and the first UHV-STM measurement of its electronic structure. 

Furthermore, we develop the novel field-directed sputter sharpening (FDSS) technique 

for producing sharp metal probes with 1 – 5 nm radii of curvature, a prerequisite for high-

resolution scanning tunneling microscopy (STM) imaging and nanolithography.  We show that 

FDSS offers significant improvements in lithographic patterning, and is applicable to a range of 

materials, including the hard metallic-ceramic hafnium diboride (HfB2).  Finally, we explore the 

use of HfB2-coated W wires for STM imaging and spectroscopy. 
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CHAPTER 1 

INTRODUCTION 

 

1.1 Motivation 

 Since its mainstream introduction,
1
 graphene has become the focus of an 

extensive collection of experimental and theoretical studies.  The benefits of graphene are 

many
2–4

 and the limitations few, but one fundamental property which limits the 

widespread introduction of graphene electronic devices is the absence of an electronic 

band gap.  Among the solutions offered to this problem are quantum-confined graphene 

ribbons,
5
 Bernal stacked bilayer graphene,

6
 and aligned graphene films on lattice-

matched insulating substrates, such as boron nitride.
7
  However, each of these techniques 

brings its own array of limitations and experimental challenges, and none have 

established dominance in the field. Another option is the introduction of a band gap in 

graphenic materials by chemical functionalization.  Stoichiometric hydrogenated 

graphene films, termed graphane, have been both theorized
8
 and experimentally realized.

9
  

Electron-stimulated desorption of hydrogen from graphane
10

 could enable the fabrication 

of graphene structures confined in a graphane barrier.
11,12

  However, the adsorption of 

small hydrogen clusters on graphene is thermodynamically unfavorable,
13

 and it has been 

suggested that many forms of graphane are inherently unstable.
14

  As probable evidence 

of this property, experimentally realized graphane films exhibit significantly lower 

resistivity than predicted.
9
  As a thermodynamically-favorable alternative, graphene 

fluoride has garnered significant scientific interest, owing to its known stability in bulk 

form,
15,16

 correspondingly high resistivity,
17

 and ability to convert semi-metallic graphene 

into a wide-gap semiconductor.
18

  The material also benefits from decades of 
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experimental and theoretical graphite fluoride research,
19–23

 owing to industrial 

applications and the importance of fluorine in the synthesis of graphite intercalation 

compounds.  However, isolation of monolayer graphene fluoride has occurred only 

recently,
24

 and interest in this chemical derivative of graphene has burgeoned 

accordingly.
25–29

  Great uncertainty persists in the field, particularly as to the presence of 

long-range structural order in graphene fluoride films produced by disparate synthesis 

techniques,
24,25

 the preferred ordering of fluorine in single-sided and double-sided 

configurations, and the prevalence and nature of defects upon reduction to graphene. 

The scanning tunneling microscope (STM)
30

 has long established itself amongst 

the dominant tools for surface science and structural analysis of materials.  However, the 

STM is heavily dependent on the application of a sharp, resilient metallic probe used to 

spatially confine tunneling current during imaging.
31,32

 As an element of this dissertation, 

we develop a modified sputter-erosion sharpening technique, field-directed sputter 

sharpening (FDSS), explore the sharpening influence of FDSS in comparison to existing 

sputter erosion sharpening techniques, and apply FDSS to novel probe materials, 

specifically the metallic ceramic hafnium diboride. We further apply FDSS tips for high-

fidelity nanolithography of the Si(100) 2 × 1:H surface by electron-stimulated desorption. 

As processing development draws nearer the limits of scaling in electronic and 

mechanical systems, we are faced with an intriguing limit of precision.  With the 

invention of the scanning tunneling microscope and subsequent development of scanned 

probe technologies,
33

 it has become increasingly possible to discuss the generation of 

structures and devices with near-atomic precision. 
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 The remainder of this dissertation will explore fluorinated graphene films, in 

single-sided and double-sided configurations.  We will consider the stability of both 

chemical configurations when substrate-supported under STM imaging and patterning 

conditions.  We study at the atomic scale the structural decomposition of monolayer 

double-sided graphene fluoride on Si(100) 2 × 1:H and the chemical interaction between 

graphenic flakes and pristine substrates.  Through STM, scanning tunneling spectroscopy 

(STS), and X-ray photoelectron spectroscopy (XPS) we elucidate the structure of one 

stable form of single-sided graphene fluoride (C4F), resolve uncertainty as to the presence 

of structural long-range order in planar-sheet graphene fluoride prepared with XeF2, and 

make the first STS measurements of the electronic band structure of this material. 

 

1.2 Probe Sharpening Methodology 

The sharpening of conductive probes is a broad field of research, commonly 

enmeshed with the study of electron beam sources for electron microscopy,
34

 field 

emitter arrays for display applications,
35

 and atomic probes for scanned probe 

microscopy.
31

  The field has increasingly flourished since the advent of the scanning 

tunneling microscope,
30

 an application generally dependent on the detailed structure of a 

scanned probe. Sharpening techniques have previously been the focus of book chapters
36

 

and review articles.
37

 The techniques employed in this dissertation and the progression of 

sputter sharpening technology will be detailed.  When quantifying the microstructure of a 

probe, a practice of measuring radius of curvature and cone angle will be adopted.  As the 

cone angle may vary with length scale, we take this angle to refer generally to the angle 

of the smallest defined cone, proximally nearest the probe apex.  A definition of these 
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characteristics is shown schematically in Figure 1.1 (all figures at the ends of chapters).  

In the literature this method of quantifying tip form is commonplace, though in some 

cases the apex diameter is referenced, and defined as the width of the smallest 

distinguishable apex feature.
38

 The term “cone angle” is frequently applied 

interchangeably with the “cone half angle,” which is half of the cone angle described in 

this dissertation. 

 

1.2.1. Electrochemical Etching of Metallic Probes 

Most probe materials routinely employed offer well-understood chemical or 

electrochemical etch (ECE) procedures for production of sharp microtips.  In one 

manifestation, tungsten probes can be etched in 3M NaOH or KOH solution under an 

applied DC bias, while platinum-iridium alloy can be successfully etched in CaCl2 with 

an applied AC bias.  Additional materials employ varied etchant and biasing conditions 

and may require subsequent etch steps.
39–41

  In all cases, these etching procedures fall 

routinely into two distinct categories, herein termed “drop-off” and “cut-off” techniques. 

Under drop-off, or lamellae, etching
42

 the desired probe wire length is extended 

through an inert counter-electrode ring within which an etchant film is confined.  While 

etching, this probe wire thins and breaks under applied bias, and the released wire is 

captured for use.  All tungsten tips reported in this dissertation were initially etched using 

the drop-off technique. 

Similarly, under the cut-off or emersion technique,
43

 several diameters of wire are 

submerged in an etchant solution in the vicinity of a counter electrode.  For this 

dissertation, and commonly for platinum-iridium etching, this counter electrode is 
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composed of graphite.
39,44

  In this configuration, a small tear-drop forms and detaches 

from the wire apex, while the top probe is collected for use.  In many cases, cut-off 

circuitry can be employed to detect this completion event,
43

 while in this dissertation 

some platinum-iridium probes employ a mild fine etch immediately prior to completion 

to reduce etch rate significantly and allow for manual cut-off.  Platinum-iridium probes 

etched in-house for this dissertation were prepared using the cut-off process described 

with fine etch and manual cut-off. 

 

1.2.2. Conventional Sputter Erosion Sharpening of Metallic Probes 

Since the discovery of pyramidal microstructure on ion bombarded surfaces,
45

 the 

physics of sputter erosion have been irrevocably linked to probe sharpening, and the 

ability to employ these sputter erosion techniques for the sharpening of probes has been 

extensively explored.
46–57

   The sharpening of polycrystalline tungsten wire is widely 

reported, with resulting radii of curvature between 5 nm
56

  and ~20 nm.
54

  The physics of 

this sharpening technique will be described in Section 1.3. 

 

1.2.3. Metallic Probe Sharpening by the Schiller Decapitation Process 

Another intriguing technique for sharpening of metallic field emitters was 

described by Schiller et al.
58

 and is sometimes termed the Schiller decapitation process.
59

  

Schiller decapitation can be conceptualized as the sputter erosion analog of a cut-off 

ECE, under which a metallic tip is modified by self-sputtering.  With Schiller’s 

technique, a negative bias is applied to a tip, inducing field ionization and subsequent 

sputter erosion of the probe apex and shank.  The resulting probes offer a reported radius 
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of curvature between 4 nm and 6 nm.  However, the technique requires a monitored 

decapitation detection mechanism, limiting the ability of this technique to scale to highly 

parallelized probe arrays.  The Schiller decapitation process is the only previous example 

known to the author of a field-influenced sputter erosion process, where the electric field 

surrounding a biased conductive serves to direct the flux of ions.  However, the technique 

is differentiated from the field-directed sputter sharpening process most clearly by the 

polarity of the applied bias and by the ion source itself.  Where the applied negative bias 

under Schiller decapitation attracts locally generated ions to the probe, under the field-

directed sputter sharpening procedure described in Chapter 2 an applied bias repels 

remotely generated ions, which travel a hyperbolic path away from the probe. 

 

1.2.4. Field-Assisted Nitrogen Reaction of Tungsten Nanotips 

The process of tungsten tip etching by nitrogen in a field-directed environment 

represents a related sharpening technique which is in essence the chemical analog of the 

physical FDSS.  One can visualize the relation between field-assisted nitrogen etching 

and FDSS as that between electropolishing and sand blasting, two distinct techniques 

with a shared objective.  By the application of a probe bias, Rezeq et al. restrict the 

reaction of nitrogen gas to the shank of a tungsten tip, thereby producing a preferential 

sharpening process.
60,61

  The primary advantage of FDSS over this technique is the 

immediate application of FDSS to multiple probe materials, including platinum-iridium 

alloy and hafnium diboride, without the need to devise novel etch chemistries.  In 

contrast, field-assisted nitrogen etching of tungsten may produce a more chemically inert 
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probe surface following sharpening, while FDSS probes composed of reactive materials 

such as tungsten are subject to oxidation upon removal from vacuum. 

 

1.3 Sputter Erosion Physics 

Sputter-induced erosion of materials and the resulting generation of predictable 

microstructured and nanostructured patterns has been a subject of research for more than 

fifty years.
62

  Study of the stopping of particles in matter and the relation between sputter 

yield and angle of incidence from which this phenomenon is derived
63

 dates back further 

still.  In his experimental result of 1959, Wehner demonstrated the sharpening of 0.5mm 

diameter metallic spheres following extensive sputter erosion over hundreds of hours.
62

  

In this early work, similar to those which followed, the spheres are electrically connected 

to the grounded reference potential.  The underlying physics of this sputter erosion are 

well described by the Sigmund model.
46

  Understanding of sputter erosion physics was 

additionally refined through the work of Barber et al.
47

 and Carter et al.
50

 where the 

sputter erosion process is modeled with Frank’s model of chemical dissolution of crystals 

by kinematic wave theory.
64,65

 

In a straightforward model, sputter erosion of surfaces can be envisioned as a flux 

of energetic ions inducing vibration and displacement of atoms within a substrate by 

collision cascade.
46

  We can describe sputter erosion by the sputter yield: 

 ( )  
             

             
     (1.1) 

As expected, the sputter yield is a function of substrate material and structure, ion 

species, and ion energy. Additionally, the sputter yield exhibits a curious relationship 

with the angle of incidence (θ) between an ion path and the substrate, shown from 
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theoretical modeling in Figure 1.2.  When considered in terms of a cascade of atomic 

collisions and a non-zero penetration depth for each ion (Figure 1.3), this result is 

verified.  Sputter yield is the number of displaced atoms with sufficient recoil action to 

reach the sample surface and sufficient energy to overcome surface binding forces.  As a 

result, most sputtered atoms are surface atoms, and sputter yield is related to spatial 

overlap between the sputter cascade and the substrate surface (Figure 1.4).  As the angle 

of incidence of an incoming ion varies from surface normal to glancing incidence, a 

greater fraction of available energy is distributed in the near-surface region, increasing 

the overlap between the energy distribution and surface plane, and therefore increasing 

the sputter yield.  An energetic ion will penetrate the surface while slowing due to the 

influences of nuclear and electronic stopping.  Energy from the ion is distributed within 

the surface through interaction with atomic nuclei, producing an energy distribution 

centered some distance beneath the surface with a distribution that is approximately 

Gaussian.
46

  As the angle of incidence is increased, sputter yield will increase as overlap 

between the sputter cascade and the substrate surface increases, thus facilitating the 

escape of a larger fraction of surface atoms. Approaching glancing incidence, ion 

reflection becomes increasingly prevalent. Reflection results in a rapid sputter yield 

decline until erosion halts for an ion flux parallel to the surface. 

In modeling conventional sputter erosion (CSE) sharpening, we consider two 

distinct regimes.  Under the first-order model of sputter sharpening, topographical surface 

modification is considered on a scale significantly larger than the ion penetration depth.  

In this case, we can model a sharpening process from the relation between yield and 

angle of incidence.  Modeling first-order CSE, we consider a probe of distinct, flat planes 
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as shown in Figure 1.5.  During sputter erosion, each plane will etch at a rate related to its 

angle by the Y(θ) curve.  As competing planes propagate, those etching most rapidly will 

in time overtake more gradually etched planes, resulting in an arbitrarily sharp apex with 

cone angle corresponding to the global maximum of the Y(θ) curve.  Experimentally, this 

maximum is found to produce cone angles of 60° – 80° for various substrate materials 

and ion species.
66

 

This first-order model provides a clear understanding of microstructure produced 

by sputter erosion well beyond the nanometer scale, particularly of the probe cone angle.  

However, in understanding CSE at the nanometer scale, one must more explicitly 

consider the collision cascade as well as surface diffusion effects. 

A second-order model of CSE follows directly from the collision cascade when 

the spatial extent of this cascade is modeled.  From this model, with explicit 

consideration of atomic-scale effects within the cascade of influenced lattice atoms, one 

can derive the effects observed under the first-order erosion model, specifically the 

relation between sputter yield and angle of incidence.  As described by Sigmund,
51

 at the 

length scale of the collision cascade, sputtering of material from the target surface will 

preferentially occur downstream from the impact site.  Additionally, the model predicts 

the formation of a depression surrounding the base of an eroded pyramid, a structural 

effect verifiable experimentally in the study of sputter-induced morphological changes on 

surfaces.
67

  Sputter erosion is reduced at the probe apex, but enhanced along the 

neighboring slope, leading to a reduction of cone angle on the length scale of ion 

penetration. 
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Such collision-based erosion models do not readily explain the resulting radius of 

curvature of a probe under CSE.  Ultimately, the sharpening process is limited by the ion 

penetration depth, and the minimum radius of curvature should be on this scale. Though 

this fundamental limitation exists, those sputter erosion models described neglect the 

effect of surface diffusion on the final tip shape.  As explained by Carter
49

 and Carter et 

al.
50

 in a first-order erosion model, the resulting probe apex is further modified by the 

influence of thermally induced and radiation enhanced surface diffusion.  A more 

thorough derivation of sputter erosion sharpening following the work of Carter
49

 has been 

presented previously by the author.
68

  This effect has been studied in detail by Bradley 

and Harper
53

 and must be considered in the modeling of field-directed sputter erosion.  

Whereas sputter erosion tends toward the general reduction of probe radius, the influence 

is balanced by a preferential flux of diffusing surface atoms from the region of greatest 

curvature.  Such diffusion can be induced by thermal influences, localized or distributed, 

or by radiation induced surface self-diffusion, described in detail by Cavaillé.
69

  

Additionally, the effects of surface diffusion are influenced by the local electric field,
70

 

further complicating analysis of sputter erosion sharpening. 

 

1.4 Sputter Sharpening Apparatus 

Sputter sharpening described in this dissertation was performed in the “Chamber 

A” UHV system shown in Figure 1.6, located within the laboratory of Professor J. 

Lyding in the Beckman Institute at the University of Illinois, Urbana-Champaign.  

Sputter erosion operations were performed in a high-vacuum antechamber with a nominal 

base pressure of 8 × 10
-9

 torr.  The chamber is evacuated by a Pfeiffer-Balzers TPU-240 
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turbomolecular pump backed by an Alcatel 2008A mechanical roughing pump.  An 

integrated ion source is available in the form of a Physical Electronics PHI 04-161 sputter 

ion gun and corresponding OCI Vacuum Microengineering IPS3 controller.  Electrical 

contact to the probe is provided by dual high voltage vacuum feedthroughs which allow 

for biasing and, where desirable, resistive heating.  During field-directed sputter 

sharpening, tip bias is applied by a Systron-Donner M107 precision DC voltage source 

adjustable to 1 kV.  During sputter cycling the chamber is backfilled to 5.5 × 10
-5

 torr of 

Ar or Ne gas using a Varian variable leak valve.  Chamber pressure is monitored by an in 

situ nude ionization gauge and Varian Multi-Gauge controller with corresponding UHV 

board (gas correction factor 1.0). 

Probe characterization is performed in a Philips CM200 transmission electron 

microscope (TEM) operating at 200 kV with nominal achievable resolution of 2 Å.  The 

CM200 includes an integrated CCD camera (2000 × 2000 pixels) for image collection.  

Prior to TEM characterization, probes are removed to ambient conditions for transfer. 

Additionally, the high-vacuum sputter erosion chamber is interlocked with UHV 

preparation and STM chambers, both maintained below 1 × 10
-10

 torr, for which the 

probes are destined.  Imaging and patterning work is performed in constant-current mode 

using a room temperature STM designed by Lyding et al.
71

 comprising two concentric 

piezoelectric tubes.  The inner tube provides fine probe motion and facilitates inertial 

probe translation
72

 while the outer tube provides inertial sample translation.  Microscope 

control is accomplished via a digital feedback control system
73

  and custom software 

designed by Professor Joseph Lyding et al.  An STM system of similar structure is shown 

schematically in Figure 1.7 and has been described previously.
74
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1.5 Electron-Stimulated Desorption 

In addition to its use for atomically resolved topographic and spectroscopic 

imaging of surfaces, the local influence of the STM tips provides a high-resolution probe 

for the manipulation of surfaces, a diverse array of techniques that take many forms.  Such 

ability was recognized from the early days of STM.
75

  In early demonstrations, the STM 

was employed as a local probe for deposition of carbonaceous contamination,
75,76

 transfer 

of single atoms and molecules to surfaces,
77,78

 and direct writing of metal nanostructures 

from organometallic precursors.
79

  Perhaps the most memorable demonstration of this 

nanomanipulative capability was the work of Eigler and Schweizer
80

 from which came the 

iconic image of “IBM” written with 35 Xe atoms on Ni(110). 

The study of electron-stimulated desorption (ESD) of atoms and molecules on 

surfaces predates the invention of the STM by decades,
81–84

 and has been the subject of 

extensive review.
85,86

  Like ion- and photon-stimulated desorption, ESD makes accessible 

desorption processes which are unachievable by thermal effects.  In general terms, ESD 

proceeds by the electronic excitation of an adsorbed atom or molecule from a bonding to 

an anti-bonding configuration. 

It was recognized early that the STM is uniquely suited to lithographic patterning 

due to the extreme spatial localization of the electron beam, leading directly to spatial 

localization in the lithographic patterns produced.
87

  Indeed, several resist chemistries 

were employed for this purpose in early studies, including carbonaceous contamination,
76

 

calcium fluoride,
88

 and polydiacetylene.
89

  However, it was recognized that a single layer 

of chemisorbed atoms offered an ideal resist layer owing to its potential for high 
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resolution patterning and chemical contrast,
90

 with hydrogen as the obvious choice, given 

its applicability to the technologically relevant Si surface, low atomic weight, and 

compatibility with the preparation of atomically-pristine Si surfaces (unlike fluorine).  An 

early study of STM nanolithography was performed in air by Dagata et al.
91

 and 

demonstrated patterned oxidation of n-Si(111):H. The patterning effect was attributed to 

field-enhanced oxidation. This work was followed quickly by demonstrations of tip-

induced hydrogen desorption.  Lyo and Avouris
92

 demonstrated induced desorption from 

Si(111) following decomposition of H2O in a process then attributed to a combination of 

field-induced desorption and tip-surface chemical interaction. Their work was followed by 

an H desorption study from Becker et al.
93

 who demonstrated removal of H from the 

Si(111) 1 × 1:H surface, leading to local formation of the Si(111) 2 × 1 reconstruction.  

ESD lithography with a hydrogen resist was first demonstrated by Lyding et al.
94

 for the 

purpose of patterned oxidation on the Si(100) 2 × 1:H surface. Subsequent efforts 

introduced access to a vibrational heating desorption regime
95

 and feedback controlled 

lithography (FCL), which extends to the controlled desorption of individual H atoms.
96

  

Early patterning work has since extended to such universal processes as atomically-precise 

doping of silicon,
97,98

 and the creation of quantum-dot cellular automata structures from 

arrays of Si dangling bonds.
99

 These techniques provide atomic resolution patterning, and 

FCL provides precise control over the number of atomic desorption events.  Nevertheless, 

electron-stimulated modification techniques are inherently stochastic in nature, with 

patterning fidelity dependent on the spatial distribution of electron tunneling current 

between tip and sample, and subject to the influence of secondary electrons.
100

  In the case 

of ESD this effect is manifested in spurious depassivation sites distant from the pattern 
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center.  The goal of reliable and atomically-precise lithographic control of H removal by 

ESD remains elusive, and becomes more important as technologically relevant patterns 

approach the atomic limit. 

ESD from substrates by electron transport from STM tip to sample can occur in 

two distinct regimes, commonly called field emission and tunneling.  Both are related and 

depend on the quantum mechanical tunneling mechanism.  They are distinguished by the 

existence of a free electron during transmission.  In the case of tunneling, the electron 

tunnels directly through the vacuum gap into a substrate state, in quantum mechanical 

terms never existing in the gap as a free electron.  In contrast, under field emission, the 

electron is field-emitted from the tip, tunneling through a vacuum gap made narrower by 

the high electric field into free space before entering the substrate. 

 

1.6 Hafnium Diboride 

Hafnium diboride is one of an array of group IV diborides, and is a hard, brittle 

metallic ceramic characterized by an array of advantageous mechanical and electrical 

properties.  In particular, in its bulk form, HfB2 has a high Young’s modulus of 504 

GPa,
101

 high bulk hardness of 31.5 GPa,
102

 low room temperature electrical resistivity 

between 10.6
103

 and 15.8 μΩ-cm,
104

 and a high melting point of 3240 °C.
105

  Various 

applications for films of metal borides, and specifically hafnium diboride, have been 

proposed, including wear-resistant coatings,
106

 resistive heating elements,
107

 and Cu 

diffusion barriers.
108

  Such properties and applications, combined with the high 

conductivity of HfB2 films, makes them exceptional candidates for the synthesis of ultra-

hard, chemically resistant, conductive probes for STM.  The deposition process employed 
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in this dissertation has been the subject of substantial research,
109–111

 and will be reviewed 

here only briefly. 

The synthesis of metal diborides has historically followed from high-temperature 

processing above 1000 °C,
112

 chemical vapor deposition (CVD) from halogen-based 

precursor molecules,
113

 or the reduction of metal oxides with boron.
114

  By employing the 

binary tetrahydroborate hafnium borohydride (Hf(BH4)4) precursor, known to produce 

non-volatile metallic borides upon decomposition,
115

 a low temperature CVD process is 

enabled that is free of carbon and halogen contamination,
116,117

 with a substantial 

processing temperature reduction to temperatures as low as 200 °C.
108

 

Films deposited at low temperature (200 – 400 °C) are amorphous and of high 

density.
108

  For deposition above 400 °C, films are crystalline but are of lower density and 

possess a columnar microstructure.
108,118

  In other work, the annealing of amorphous films 

above 700 °C was found to induce the formation of nanocrystalline HfB2 and to result in a 

significant hardness increase from 20 GPa to 40 GPa.
119

 

CVD of HfB2 from hafnium borohydride precursors opens a new avenue to the 

deposition of carbon-free and halogen-free metallic films by electron beam induced 

deposition (EBID).
120

  In particular, the probe tip of an STM has been employed for local 

deposition, producing 5 nm metallic wires.
121

 

 

1.7 Graphene 

Scientific interest in graphene has persisted since the earliest theoretical 

treatments of its unique structure and corresponding electronic characteristics.
122–124

 In 

part, this interest arises from the importance of graphene as the fundamental building 
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block for other carbon-based systems.  Early work focused on graphene as the base unit 

of graphite, and more recently graphene has garnered further attention as the structural 

basis for fullerenes and carbon nanotubes.
125–127

  However, for decades graphene was 

perceived primarily as a structure for academic treatment of other, practical 

materials.
128,129

  It was predicted, and almost universally agreed, that such two-

dimensional materials as graphene could not exist in a stable form in isolation from bulk 

support structures.  In some sense, this view is warranted, and even in recent years it has 

been recognized that graphene will preferentially fold, buckle, and roll itself out of two-

dimensional space given the opportunity, but the recent development of graphene 

exfoliation to insulating substrates
1
 makes clear the limitations of this model. 

 

1.7.1. Origins and Development of Graphene 

One must note the body of experimental work that predates the mainstream 

introduction of graphene to the scientific community in 2004, and the manner in which 

this work has evolved to create the recent flurry of activity surrounding the study of 

monolayer, bilayer, and trilayer graphene. 

Among early papers on the subject, the first claim of monolayer graphene known 

to the author came from the reduction of exfoliated graphite oxide in 1962.
130,131

  Because 

the original texts are in German, we translate a relevant passage: 
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The carbon films were obtained by the reduction of graphite oxide, 

which was dispersed in dilute sodium hydroxide.  From the 

contrast of the electron microscope, i.e. from the electron 

scattering, the thickness of these films is determined to a few 

hexagonal carbon layers.  The lowest values were 3 – 6 Å, and 

pointed to the presence of films that consist of a single carbon 

layer.
131

 

 

Nevertheless, though the authors employed properly the technology and 

techniques available, in light of fifty years of hindsight, the methods available 

(comparison to a range of calibration standards of known thickness) introduce significant 

uncertainty when attempting to characterize atomically-thin materials.  Nevertheless, it is 

understood that reduction of exfoliated graphite oxide is capable of producing monolayer 

films,
132

 and therefore it may be reasonably suspected that Boehm et al. produced 

monolayer graphene from graphite oxide in their work.  In intervening decades, graphite 

oxide films were studied extensively, and this interest has only continued to grow since 

2004.
132–137

 

The first conclusive evidence for monolayer graphene came in 1968 and 1969 

when May et al.,
138

 based on the observations of Morgan and Somorjai,
139

 correctly 

identified monolayer graphene in low-energy electron diffraction (LEED) patterns on the 

Pt surface following exposure to various carbon precursors at temperatures from 25 °C to 

1400 °C.  Together with early demonstrations of few-layer graphene on Ni,
140

 this work 
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represents the earliest study of graphene chemical vapor deposition (CVD) on metal 

surfaces. 

Since these early discoveries, graphene CVD has been reported on many 

transition metal surfaces, including Pt,
141–145

 Ni,
146–149

 Pd,
143

 Re,
150

 Co,
143

 Ir,
151–153

 Ru,
154–

157
 and Cu.

158–161
  Growth kinetics, and thus graphene thicknesses, vary by substrate 

material depending on whether growth follows a precipitation
162

 or surface adsorption
158

 

process.  The distinction between growth processes can be clearly illustrated by isotope 

labeling during growth.
163

  The example systems, Ni and Cu foils, demonstrate that 

growth on Ni proceeds by the absorption of C into the Ni bulk at high temperature, 

followed by a precipitation process during cooling.  In contrast, graphene growth on Cu is 

found to follow a surface adsorption process, whereby graphene islands nucleate and 

grow until full surface passivation is achieved.  The significance of this distinction arises 

primarily in the preferentially monolayer nature of graphene grown on Cu, where on Ni 

substrates growth conditions must be precisely controlled to minimize the formation of 

multilayer graphene.
148,149,164

  CVD of graphene on Cu foil is a recent discovery
158

 and a 

technique employed in this dissertation for the growth of monolayer graphene. 

Further early work on the synthesis and etching of graphene nanostructures came 

from the laboratory of Sumio Iijima, who would later be credited with the discovery of 

carbon nanotubes.
165

   In early studies of few-layer graphene by Iijima et al.,
166–168

 

transmission electron microscopy was employed not only to confirm the presence of few-

layer graphene but to demonstrate thinning under electron bombardment and etching by 

W atoms.
166

  By imaging of the rolled edges of graphene flakes, films as thin as trilayer 
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graphene could be clearly identified,
166

 and modified by the influence of the imaging 

electron beam and deposited W adatoms.
167

 

The graphitization of SiC upon heating was first reported by Edward Acheson and 

patented in 1896 as a method for producing artificial graphite from low-quality carbon 

feedstock.
169

  The graphitization of SiC(0001) above 800 °C (generally between 1200 °C 

and 1800 °C) was well understood by the 1970s.
170–172

 In the decades following, the 

ability to produce monolayer and bilayer graphene on the Si face of SiC was 

developed,
173–180

 ultimately leading to the development of transfer-free graphene 

electronic devices such as field-effect transistors (FETs) operating at speeds up to 100 

GHz.
181

 

By 2004 it remained unclear whether monolayer graphene existed, as it was 

generally agreed to be fundamentally unstable in its two-dimensional form.  Numerous 

researchers worked extensively to isolate graphene by exfoliation, a process that, in 

hindsight, was limited more by their ability to identify monolayers than to produce them.  

It is likely that monolayer graphene is created with every pencil mark,
182

 but without a 

mechanism to efficiently evaluate the resulting flakes, an exhaustive search becomes 

overwhelmingly costly.  Although thin graphite films had been produced by mechanical 

exfoliation,
183

 the scaling of this technique to monolayer films proved difficult.  This 

limitation was finally overcome by Novoselov et al. in 2004,
1
 when they demonstrated 

sufficient optical contrast in few-layer graphene to distinguish monolayer and bilayer 

films.  The key to this discovery was the observation of an interference effect on SiO2 

films of specific thicknesses (e.g. 300 nm).  As a result of this crucial discovery, the 

vetting of graphene flakes produced by mechanical exfoliation (the “scotch tape” 
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method) became practical.  Ultimately, this led to the demonstration of certain physical 

phenomena in graphene
184,185

 including the half-integer quantum Hall effect (QHE) and 

Berry’s phase. 

Thereafter, the study of monolayer graphene rapidly expanded to the extent that 

the original 2004 paper from Novoselov and Geim has been cited between 6207 (Web of 

Science) and 7477 (Google Scholar) times in the scientific literature.  Between January 1, 

2012 and February 28, 2012 (2:57 PM central time) 162 new research articles have been 

posted to arxiv.org which contain “graphene” in their title.  This phenomenon was driven 

not only by the curious physics of monolayer graphene, but perhaps more so by a low 

barrier to entry in a field that had been previously explored only cursorily. Suddenly 

every research scientist on earth had the ability to produce monolayer graphene, literally 

in their garage if they desired, and a massive body of research rushed in to the fill the 

vacuum.  It is beyond the scope of this discussion to review this work in its entirety, 

though several books and reviews have followed the subject.
2,3,186–189

 

We will, however, discuss recent studies of graphene growth, particularly on Cu 

substrates, following the techniques employed in this dissertation for the synthesis of 

single-sided graphene fluoride.  As we have seen, CVD of graphene on transition metal 

surfaces was one of the first techniques available for monolayer synthesis, and by 2009 

similar techniques had been applied to a wide range of metals.  In particular, the 

formation of graphitic films on Ni was discovered as early as the 1960s,
140,190

 and this 

substrate has remained popular due to ease of growth, low cost, and easy 

transferability.
164

  However, given the high carbon solubility of Ni, limiting graphene 

film thickness becomes a major challenge.
191

  Recently, Peng et al. demonstrated the 
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reproducible, transfer-free growth of bilayer graphene on SiO2 with a Ni catalysis 

layer.
192

 Carbon applied to the top surface of a 400 nm Ni film is absorbed during high-

temperature processing, and on cooling produces a bilayer graphene film at the Ni-SiO2 

interface.  Chemical etching of the Ni leaves a bilayer graphene film at the surface.  Other 

surfaces, such as Pt and Ir have been used to produce monolayer graphene,
138,152

 but high 

cost and limited transferability prevent their wholesale acceptance as growth substrates.  

Other researchers worked to grow graphene films directly on insulating surfaces,
193

 but 

the quality of CVD graphene remains highest on metals. 

Although in some early work, the formation of graphitic films on Cu substrates 

was demonstrated as an element of diamond nucleation,
194,195

 it was not until 2009 that 

the field began to develop rapidly due to demonstration of consistently monolayer CVD 

graphene on Cu by Li et al.
158

  Due to Cu’s extremely low carbon solubility,
196

 graphene 

growth on Cu proceeds by a surface adsorption process instead of bulk precipitation.
163

  

As a result, large grains of monolayer graphene were preferentially formed under 

favorable growth conditions.
197

  The low cost of polycrystalline Cu enables a scalable 

growth process which ultimately led to demonstration of a roll-to-roll growth and transfer 

process for 30 inch graphene films with Hall mobilities as high as 7350 cm
2
V

-1
s

-1
.
160

 

 

1.8 Fluorinated Graphite 

There has been a recent burst of interest in the chemical functionalization of 

graphene films, in part as a means of improving control of its exciting, yet restrictive, 

electronic band structure.  As in many research fields, recent studies can draw readily on 

decades of work by hundreds of early researchers.  Although chemically modified 
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monolayer graphene is a relatively new material (with the notable exception of exfoliated 

graphene oxide), the chemical modification of bulk graphite has been studied extensively 

over more than 60 years, and has been the focus of many published works.
21–23,198,199

  In 

particular, fluorinated graphite has been the subject of extensive study, due in part to 

industrial applications as a lubricant superior to graphite
200–203

 and as an excellent 

cathode material for lithium ion batteries.
204,205

  Additionally, interest in graphite 

intercalation compounds (GICs)
206,199,207

 directed substantial interest to fluorinated 

graphite due to the intercalation of F into graphite, and its importance in the formation of 

many other metal fluoride GICs.
22

  While countless fluoride intercalation compounds 

have been synthesized and studied,
19,198,20–23

 for our purposes the most relevant are 

planar-sheet graphite fluoride (a fluorine-graphite intercalation compound)  and the 

related covalent compound, puckered-sheet graphite fluoride (variously termed carbon 

monofluoride, polycarbon monofluoride, or graphite fluoride).  Planar and puckered 

forms of graphite fluoride are the bulk lamellar analogues of single-sided and double-

sided graphene fluoride, respectively.  We do not attempt a comprehensive discussion of 

the wide-ranging field of fluorinated graphite, but rather introduce the bulk materials 

most closely related to the monolayer films explored in this study, and highlight the most 

fundamental characteristics of each. 

 

1.8.1 Puckered-Sheet Graphite Fluoride 

In its most stable form, fluorinated graphite is a covalent fluorocarbon in which the 

planar aromatic backbone is converted to a puckered film of sp
3
 carbon.  The resulting 

compound generally takes the form (CF)n or (C2F)n, and in the former case has been 
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variously termed graphite fluoride, carbon monofluoride, polycarbon fluoride, 

polycarbon monofluoride, or poly(carbon monofluoride).  It is the most highly 

fluorinated of the various forms of fluorinated graphite, and generally exists as a gray-

white powder, or a transparent crystal in the case of highly fluorinated HOPG.
208

 

Graphite fluoride was first synthesized by Ruff and Bretschneider
15

 in 1934 by the 

exposure of graphite to fluorine at temperatures between 280 °C and 430 °C to produce a 

fixed-valence compound of composition C1.09F.  Subsequently, CxF (1.02 ≤ x ≤ 1.48) was 

produced by Rüdorff and Rüdorff in 1947 between 420 °C and 500 °C.
209

  The original 

model proposed for this compound
210,211

 was refined by the Rüdorff model,
209

 and 

independently through the work of Palin and Wadsworth,
212

 which drew on the structure 

proposed by London
213

 in private discussions, and was published by Bigelow
214

 with 

acknowledgement.  With a growing interest in graphite intercalation, the related planar-

sheet graphite fluorides attracted substantial interest starting in the 1970s, and will be 

discussed in Section 1.8.2. 

(CF)n graphite fluoride is generally believed to prefer the form of a trans-linked 

cyclohexane chair,
209

 rather than a cis-trans-linked cyclohexane boat,
215

 despite early 

dispute arising in part due to NMR studies indicative of a boat configuration.
20

  This 

conclusion is also supported by the first density functional theory (DFT) study of 

puckered-sheet graphene fluoride,
18

 wherein Charlier et al. modeled (CF)n in both boat 

and chair configurations.  The chair configuration was found to be energetically favorable 

(0.145 eV/C-F bond), though the boat configuration was also a metastable state with a 

significant (>2.7 eV) barrier for likely transition paths, suggesting that the boat 
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configuration may be realizable, though unfavorable, depending on the kinetics of 

fluorination. 

Electronically, strong covalent C-F bonding in (CF)n results in an insulating gray 

or white compound with a large (>3 eV) band gap.  Charlier et al. report a 3.5 eV direct 

band gap at the Γ point, with a 2.7 eV direct band gap at the A point.
18

 

Interest in puckered-sheet graphite fluoride has reemerged in the last decade, due 

to renewed interest in chemical functionalization of monolayer and few-layer graphene 

materials.  Recent experimental studies of graphene fluoride will be discussed in Section 

1.9.3, but we will describe first the process and difficulties of extracting graphene from 

bulk graphite fluoride. 

The first experimental studies of graphene fluoride
17

 were enabled by mechanical 

exfoliation of bulk (CF)n prepared using conventional techniques.  Multilayer graphene 

films were exfoliated to SiO2, with thicknesses ranging from 6 to 10 nm.  Transport 

measurements made on these films verified their high resistivity (~30 GΩ), a result 

consistent with the large anticipated electronic band gap.  Absent in this early study was 

the presence of monolayer or even few-layer graphene samples.  Several groups, 

including researchers in the Lyding STM Laboratory, have since observed the difficulty 

of exfoliating monolayer (CF)n.
17,25,27,216

  Although Withers et al. exfoliated monolayer 

C4F, their efforts to produce monolayer (CF)n from bulk led them to describe the process 

as “impossible.”
27

  Subsequently, Nair et al.
25

 did successfully demonstrate monolayer 

exfoliation of 1 μm flakes, likely due to a less destructive, lower temperature fluorination 

process, but described these monolayer flakes as “extremely fragile and prone to 

rupture,” resorting to the on-surface fluorination of exfoliated graphene for the synthesis 
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of larger samples. As we shall see, the work of this dissertation supports their 

observation. 

 

1.8.2 Planar-Sheet Graphite Fluoride 

A related form of fluorinated graphite can be produced by the exposure of 

graphite to fluorine, generally in the presence of fluoride compounds (e.g. HF, LiF, AgF).  

Synthesis is often performed below 100 °C, sometimes at room temperature.  In contrast 

to puckered-sheet graphite fluoride, the planar form of fluorinated graphite that results 

lacks the strong covalent bonding characteristic of (CF)n and (C2F)n, and is the result of 

graphite intercalation by atomic fluorine.  The nature of chemical bonding between C and 

F varies with F concentration.
217–219

  For low F concentrations, roughly below C20F, C-F 

bonding is ionic, and F acts as a dopant, resulting in p-doped graphite, and increasing the 

electrical conductivity above that of pristine graphite.
218

  Conductivity increases until F 

concentration reaches ~12 at%,
220

 above which the increasingly covalent character of C-F 

bonding leads to a decrease in electrical conductivity.  In the case of C4F, results vary.  In 

some studies, conductivity is nearly unchanged from that of bulk HOPG,
220

 whereas 

others report a two order of magnitude decrease in conductivity when fluorinated.
16

  As 

we shall see, this is in contrast to monolayer C4F graphene fluoride, where room-

temperature conductivity at the charge neutrality point decreases between one and six 

orders of magnitude.
24,27

  The characteristic change from ionic to semi-covalent bonding 

with increasing F concentration can also be observed in C 1s and F 1s binding energies, 

measured by XPS, which increase with increasing fluorine concentration.
22,218,219,221,222

  

These data indicate three distinct configurations of CxF, purely ionic bonding for x > 20 
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(F 1s: ~684.5 eV, C 1s: ~284 eV), nearly ionic bonding with F locally bound to a C atom 

for 4 < x < 20 (F 1s: 685.7 eV, C 1s: 284 eV), and semi-covalent bonding for x ≤ 4 (F 1s: 

>685.7 eV, C 1s: >284 eV with C-F peak offset by 3.3 eV).  The influence of such 

variable bonding character is also seen in C-C bond length, which varies with increasing 

F concentration.
22

  While the graphite lattice constant is 2.461 Å, a decrease of 0.24% is 

seen for fluorine concentrations up to C3.5F, for which a lattice constant of 2.455 Å is 

measured by X-ray diffraction.
223

  At higher fluorine concentrations, this lattice constant 

increases to 2.478 Å for C1.3F.
224

 

The first experimental realization of tetracarbon monofluoride was by Rüdorff 

and Rüdorff in their 1947 paper.
16

  Planar-sheet graphene fluoride of the form CxF 

(3.6 ≤ x ≤ 4.0) was formed by reaction with atomic fluorine in the presence of HF at 80 

°C.  It was determined that HF was necessary for the reaction to occur, and that the 

fluorination process ultimately produced tetracarbon monofluoride, being unable to 

proceed to the formation of CF or C2F.  The product of the reaction was found to be inert 

towards many acids and bases, but to decompose slowly in H2SO4 above 100 °C.  Also, 

Rüdorff and Rüdorff provided the first measurements of electrical resistivity in planar-

sheet graphite fluoride, finding an increase over graphite by two orders of magnitude, 

from 0.02 Ω-cm in graphite to 2-4 Ω-cm in C4F.  However, the resistivity of C4F was still 

significantly lower than the electrically insulating (CF)n previously studied.
15,209

  From 

their X-ray diffraction (XRD) study, Rüdorff and Rüdorff proposed the first structural 

model of C4F, a model that has since been further verified and is similar to the single-

sided structure presented in this dissertation.  In particular, they found that the aromatic 

structure of graphite was preserved, with no indication of buckling characteristic of 



27 

 

puckered-sheet graphite fluoride.  Perhaps most importantly for this dissertation, early 

XRD studies of C4F suggested the alternation of F on the top and bottom faces of each 

graphene sheet, a hypothesis again proposed in recent studies of exfoliated monolayer 

C4F,
27

 but incompatible with the single-sided fluorination presented in this dissertation.  

Although discussed in a later text,
19

 this early work was not continued until 1970, when 

Lagow et al. improved on the Rüdorff process by a static bomb synthesis technique
225

 

during his graduate study at Rice University.
198,226,215

 

Experimental exploration of the in-plane structure of fluorinated graphite suggests 

a number of viable structures.  These include the Rüdorff structure of C4F,
219

 the 

orthorhombic system of C3.5F,
227

 and a hexagonal structure in C6F.
228

 

There was a limited body of theoretical work on the electronic properties of 

planar-sheet graphite fluoride before the advent of fluorinated graphene in recent years.  

This was limited to preliminary results presented by Holzwarth et al. in 1983.
229

  

Holzwarth, et al. assumed the Rüdorff model of C4F and computed a self-consistent band 

structure from first principles. The results of this simulation suggested that C4F is a 

semiconductor with a 2 eV band gap. 

 

1.9 Chemically Modified Graphene 

In order to enable greater control of the mechanical, thermal, and electronic 

properties of graphene, various forms of graphene chemical modification have been 

explored.  Recent studies of graphene’s chemical derivatives follow primary on early 

studies of graphite intercalation compounds (GICs)
23,230,231

 together with covalent forms 

of functionalized graphite: graphite oxide
136

 and graphite fluoride.
21

  GICs are non-
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covalent lamellar structures where intercalate molecules are interspersed between sp
2
 

bonded carbon sheets.  Structures are characterized by the number of carbon layers 

between intercalate layers, termed the “stage number.”  For instance, a stage 1 compound 

comprises alternating layers of monolayer graphene and intercalate.  Stage 2 compounds 

(e.g. bromine GICs) comprise bilayer graphenic films separated by intercalate. 

Two distinct classes of chemically modified graphene occur in practice: covalent 

and non-covalent chemistries.  The most extensively studied covalent chemistries include 

fluorine, hydrogen, and oxygen (in the form of graphene oxide), which produce gapped 

insulators due to disruption of the graphene π-bonded network.  In contrast, non-

covalently functionalized graphene generally preserves the metallic nature of graphene 

but can influence various characteristics of the film including doping
232

 and solubility.
233

 

 

1.9.1. Graphene Oxide 

Graphene oxide is the earliest form of chemically modified graphene to be 

discovered, and remains of profound importance today due to its increased solubility, 

gapped structure, and reducibility.  However, the structure of graphene oxide is non-

stoichiometric, and the reduction process results in a high density of defects.  As a result, 

graphene oxide has not yet been seriously considered as an electronic material.  However, 

recent work by Hossain et al. has indicated the possibility of a related method of 

graphene functionalization, whereby oxygen is bonded in an epoxy configuration.
234
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1.9.2. Hydrogenated Graphene 

Early interest in the interaction of hydrogen with graphite and graphene
235–237

 

centered on the development of hydrogen storage technologies,
238

 rather than the 

electronic implications of such a structure.  In graphite, hydrogen intercalation is not 

generally observed, though hydrogen is incorporated into certain ternary intercalation 

compounds containing alkali metals.
239,240

  Theoretical works have predicted a stable 

hydrogenated form of monolayer graphene.
8
  Other studies, however, have noted a 

significant nucleation barrier to hydrogenation,
13

 suggesting the difficulty of producing 

such a material.  Although hydrogenated graphene films have since been realized 

experimentally,
9
 their stability in isolated form remains uncertain due to low resistivity,

9
 

and their formation appears strongly dependent upon graphene-substrate interaction.
241

 

Although the structure of hydrogenated graphene as a trans-linked cyclohexane 

chair has been predicted,
8
 no experimental verification of this structure is known to the 

author, perhaps due to its recent discovery or to its thermodynamic unfavorability.  Other 

proposed single-sided structures include C2H, where H atoms bind to a single graphene 

sublattice,
242

 and 1-D hydrogen chains separated by rippled sp
2
 graphene.

243
 

The electronic band structure of fully hydrogenated graphene was predicted 

theoretically,
8
 and measured experimentally by angle-resolved photoelectron 

spectroscopy (ARPES).
244

  In the same ARPES/STM study, a significant substrate 

influence on hydrogen absorption was observed, where hydrogen chemisorption was 

templated preferentially in the Moiré superstructure positions of the Ir(111) substrate and 

graphene overlayer where graphene-substrate interaction was greatest.
244

  In a subsequent 

study,
241

 the complementary influence of hydrogenation and substrate interaction was 
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explored in detail.  Covalent interaction of adsorbed hydrogen with graphene is enhanced 

on highly interacting substrates, ultimately enabling a graphane-like structure with 50% 

H coverage on one side, due to substrate interaction with the downward puckered C 

atoms pairing with H interaction on the upward puckered C atoms.  In other work by 

Guisinger et al., the hydrogenation of monolayer graphene was observed by STM
245

 and 

subsequently patterned by ESD by Sessi et al.
10

  Their work experimentally introduces 

the theorized possibility of creating confined graphene nanostructures in hydrogenated 

graphene barrier,
11

 but such goals have remained elusive to date. 

 

1.9.3. Fluorinated Graphene 

In direct contrast to hydrogenated graphene, and like bulk fluorinated graphite, 

fluorinated graphene is thermodynamically stable and readily synthesized.  Recently, 

three distinct forms of graphene fluoride have been produced, which we characterized by 

their fluorine concentration and atomic configuration. 

The first, dilute fluorinated graphene (DFG), is characterized by an extremely 

low concentration of fluorine, which serves to introduce p-type doping into the graphene 

sheet.  In prior studies of DFG, an unexpected colossal negative magnetoresistance effect 

was seen, with a significant (×40) reduction in resistance under magnetic fields of 9 T.
246

 

The second, ss-GF, is a covalent form of fluorinated graphene where fluorine is 

confined to a single side due to the presence of some barrier to double-sided adsorption 

(typically a substrate).  In many ways, ss-GF is analogous to planar-sheet graphite 

fluoride.  For example, under typical fluorination conditions, both materials saturate in 

the form of C4F, and will not readily proceed to full coverage.  Additionally, ss-GF is six 



31 

 

orders of magnitude more resistive than graphene.
247

 As we will show, the atomic 

structure of monolayer C4F is similar to the Rüdorff structure of graphite fluoride, despite 

its single-sided nature.  In an early demonstration of ss-GF, Robinson et al. employ an 

XACTIX XeF2 etching system similar to the one used in this dissertation to functionalize 

the top side of a Cu-bound graphene sheet.
247

 

 In a different approach, Withers et al. produced graphene fluoride by the 

mechanical exfoliation of planar-sheet graphite fluoride (C4F).
27

  While the structure of 

this material approximates ss-GF, it is not strictly single-sided.  Indeed, Withers et al. 

suggest the alternating orientation of the Rüdorff structure, although this hypothesis 

remains untested. 

The third, ds-GF, or fluorographene, is a covalent form characterized by full 

fluorination, CF in saturation.  Ds-GF is analogous to puckered-sheet graphite fluoride, 

with similarly high resistivity.  Another common characteristic of ds-GF is ease of 

rupture during exfoliation,
25,27

 possibly due to the creation of defects during the 

fluorination process.  In this dissertation we demonstrate ds-GF produced by mechanical 

exfoliation from bulk graphite fluoride, further probing this instability by STM.  In other 

cases, graphene can be fluorinated on both sides after exfoliation
25

 or growth,
247

 resulting 

in monolayer ds-GF.  In early studies of few-layer ds-GF, Cheng et al. demonstrated 

mechanical exfoliation from bulk CF.
17

  Subsequently, Robinson et al. demonstrated the 

double-sided fluorination of CVD graphene by exposure to XeF2 on a SOI substrate, on 

which Si etching facilitated the exposure of graphene’s bottom surface and creation of CF 

ds-GF.
247

  Shortly thereafter, Nair et al. demonstrated both mechanical exfoliation of 

micron-sized monolayer flakes from graphite fluoride, noting their propensity to rupture, 
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and the fluorination of pre-exfoliated graphene by exposure to solid XeF2 at 120 °C over 

days to weeks.
25

 Subsequently, Zbořil et al. demonstrated a liquid-phase exfoliation 

process to produce monolayer ds-GF from puckered-sheet graphite fluoride.
248

 

The goal of reducing fluorinated graphene to recover pristine graphene, 

particularly in a lithographically patterned manner, has been pursued by several groups, 

each with their own methods.  One primary goal of ongoing study is the creation of 

electronic nanostructures within fluorinated graphene films,
14,249

 which would enable the 

production of graphene-only integrated circuits with a combination of metallic graphene 

and semiconducting graphene nanowires confined within a graphene fluoride barrier.  In 

their earliest work, Cheng et al. reduced graphene fluoride films by annealing at 500 – 

600 °C in Ar/H2 gas, a process that reduced the material and recovered a conductive 

graphenic material.
17

  As shown later by Robinson et al. this thermal annealing process 

introduces a substantial density of defects in the graphene, seen in Raman spectra.  To 

resolve this issue, a hydrazine treatment process
250

 was employed at lower temperatures 

between 100 and 200 °C, resulting in efficient reduction while enabling a partial recovery 

of graphene’s aromatic carbon backbone.
247

  Zbořil et al. contributed a chemical approach 

to graphene fluoride reduction, conversion to graphene iodide by halide exchange using 

KI.
248

  In the first demonstration of patterned reduction, Withers et al. developed an e-

beam lithographic technique for patterned reduction of C4F flakes exfoliated from bulk 

planar-sheet graphene fluoride.
29

  Feature sizes achieved in this work were as small as 40 

nm.  By the inverse approach, patterned fluorination, Lee et al. created 35 nm graphene 

ribbons in ss-GF.
251

  A polystyrene mask is applied by thermal dip-pen nanolithography 

with a heated AFM tip, and a wide range of control experiments employed to verify the 
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negligible influence of polystyrene and fluorinated polystyrene on the resulting devices.  

Upon exposure to XeF2, graphene is converted to wide-gap C4F, but with the polystyrene 

films acting as a mask, graphene nanoribbons are produced. 

 

1.9.4. Chlorinated Graphene 

The formation of chlorine-based GICs dates back to 1957,
252

 and is being studied 

extensively.  Although Cl2 does not intercalate into graphite
253

 due to poor lattice 

matching with the graphite lattice,
254

 molecular chlorine is an important element in the 

intercalation process of other species, and is cointercalated together with some materials 

with which it is miscible, such as Br2
255

 and I2,
256

 thereby providing the required lattice 

match.  Most metal chlorides will intercalate in the presence of Cl2, and in some cases 

spontaneously, where the molecule dissociates to produce Cl2.
23

 

Unlike as for fluorine and hydrogen, it is not yet clear whether covalent 

chlorinated graphene structures are experimentally realizable.  In a recent study by Li et 

al.,
257

 the existence of covalently functionalized chlorinated graphene on SiO2 was 

suggested.  In that work, a photochlorination procedure was employed for graphene 

functionalization, wherein monolayer graphene was exposed to atomic chlorine produced 

by irradiation with a Xe arc lamp.  The resulting graphene exhibited covalent C-Cl 

bonding with 8 at% coverage, an increase in electrical resistivity, and an increase in the 

Raman D peak, indicating increased sp
3
 bonding character.  However, these results 

conflict with a subsequent study by Wu et al.
258

 in which graphene was exposed to 

chlorine plasma, resulting in ionically bound chlorine and p-type doping, coupled with 

slow etching of graphene and resulting decrease in conductivity.  The disagreement 
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between these papers was explored theoretically by Ijäs et al.
259

 whose simulations were 

consistent with the results of Wu, et al. and suggested that the results of Li et al. could be 

explained by the predicted fracturing of graphene into chlorine-terminated nanodomains.  

However, the work of Ijäs et al. did not exclude the possibility of substrate-mediated 

covalent functionalization of graphene by chlorine, particularly in light of earlier 

observations that the substrate has a substantial influence on the covalent adsorption of 

hydrogen on graphene.
260,261

  In fact, simulations of chlorinated graphene on various 

silicon oxide surfaces suggest covalent functionalization to be achievable.
259

 

In light of these works, we conclude that chlorinated graphene is generally 

characterized by ionic C-Cl bonding, consistent with previous studies of chlorine GICs.  

However, given the slow rate of etching, chlorination of graphene may offer a useful 

alternative to substitutional doping for conductivity modulation.  Furthermore, given an 

apparent preference for covalent functionalization of graphene edges, and the instability 

of adatoms bound to the graphene basal plane, Cl may have applications for edge state 

passivation on graphene nanoribbons. 

 

1.9.5. Brominated Graphene 

Molecular bromine forms a GIC of stage 2 or higher,
262

 with a rectangular 

superlattice generally of the form C7nBr2 or C8nBr2.
263–266

  The interlayer spacing of Br2 

GICs varies from 7.03 Å for stage 2 compounds to 6.99 Å for stage 5 compounds.
264

  

This stage 2 intercalation structure scales in a simple way from bulk graphite to 

monolayer graphene, as explored by Jung et al.
267

  Bromine adsorbs on outer surfaces of 
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monolayer and few-layer graphene, and intercalates into every second plane, but does not 

form covalent C-Br bonds. 

 

1.9.6. Interaction of Iodine with Graphene 

It is almost universally agreed that molecular iodine does not intercalate into bulk 

graphite. This result is attributed to the low electronegativity of iodine and the lattice 

mismatch between molecular iodine and graphite.
254

  However, I2 can be cointercalated 

with other halogens such as Cl2,
256

 and several related interhalogens form GICs.
23

  In the 

case of monolayer and few-layer graphene, surface adsorption of I2 is observed by Jung 

et al.,
267

 leading to p-type doping, an upward shift in the position of the Raman G peak, 

and quenching of the Raman 2D peak.  The doping influence of I2 is less than that of 

Br2.
267

  Additionally, Zbořil et al. have demonstrated the chemical reduction of 

fluorinated graphene by an intermediate graphene iodide phase,
248

 indicating both the 

instability of graphene iodide and the possible application of graphene iodide chemistry 

for the reduction of more stable derivatives. 

 

1.9.7. Non-Halogen Non-Covalent Chemistries 

In addition to hydrogen and halogen-based forms of CMG, numerous other non-

covalent chemistries have been explored to tune a range of graphene’s properties.  These 

include non-covalent functionalization for doping,
232,268

 nucleation promotion for 

subsequent deposition steps,
269

 increased graphene solubility,
233

 lithographic 

patterning,
270

 and band gap modulation.
271

  One can imagine employing a non-covalently 

bound molecule as a mask for further covalent chemistries.  For example, Wang and 
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Hersam demonstrated their ability to deposit continuous monolayers of 3,4,9,10-

perylene-tetracarboxylic dianhydride (PTCDA) on the graphene surface, without regard 

for defects and substrate steps.
272

  These films were subsequently patterned by feedback-

controlled lithography,
270

 and the resulting pattern employed as a mask for the deposition 

of N,N′-dioctyl-3,4,9,10-perylene-tetracarboxylic diimide (PTCDI-C8) on graphene.  One 

can imagine a similar process by which a molecular mask is deposited, patterned, and 

employed for patterned fluorination of graphene.  Although PTCDA may be unsuitable 

for the task, the range of adsorbates worthy of consideration is virtually limitless. 

 

1.10 Graphene Growth and Fluorination Apparatus 

Graphene studied in this dissertation was grown by CVD in the Micro and Nano 

Technology Laboratory and separately in the Micro/Nanofabrication Facility of the 

Frederick Seitz Materials Research Laboratory at the University of Illinois.  In both 

cases, growth surfaces were held in a 1 inch quartz tube and heated from room 

temperature to 800 – 1000 °C by a split single-zone tube furnace.  Gas delivery is 

provided by means of three independent mass flow controllers which deliver Ar, CH4, 

and H2.  Precise growth conditions vary, and will be reported for each independent 

sample. 

Fluorinated graphene samples are produced by two methods.  Ds-GF is produced 

by mechanical exfoliation from bulk poly(carbon monofluoride) commercially available 

from Acros Organics (Geel, Belgium).  Ss-GF is produced by exposure of monolayer 

graphene to XeF2 gas at room temperature using an XACTIX XeF2 etching system in the 
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Micro and Nano Technology Laboratory.  Fluorination times are 7 minutes and nominal 

XeF2 pressure is 3 torr. 

 

1.11 Thesis Statement 

This dissertation demonstrates FDSS of tungsten, platinum-iridium alloy, and 

hafnium diboride-coated tungsten, which results in a consistent improvement in scanned-

probe lithographic patterning compared with CSE and standard ECE procedures.  Using 

sharpened STM tips, we have identified monolayer CF flakes on the Si(100) 2 × 1:H 

surface, and observed a marked fluorine instability and flake decomposition concurrent 

with halogen etching of the underlying silicon substrate.  In a comparison with CF, we 

synthesize monolayer C4F on copper foil and characterize its structure and stability by 

STM.  Unlike CF, which is fluorinated on both sides, single-sided C4F is sufficiently 

stable at room temperature under low-energy electron bombardment to enable atomic-

resolution imaging and the assignment of fluorine configuration by STM.  We have 

verified the structure of C4F by STM as well as STS, with exceptional agreement with 

theoretical models of isolated, infinite C4F sheets.  Furthermore, we characterize single- 

and double-sided graphene fluoride by XPS, providing additional information about the 

covalent C-F bonding in both forms of graphene fluoride.  We conclude that fluorinated 

graphene, in particular ss-GF, is a wide-gap semiconductor with potential for future 

lithographic patterning and band gap modulation. 

  



38 

 

1.12 Figures 

 

Figure 1.1: Schematic representation of the relevant geometric characteristics of a 

sharpened probe.  The cone angle (θ) and radius of curvature (Rt) completely describe the 

typical form of the near-apex region of probes processed by sputter erosion sharpening. 
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Figure 1.2: Theoretical representation of the dependence of sputter yield on angle of 

incidence.  (a) Cosine dependence of energy distribution depth on angle of incidence.  (b) 

This relation displays a typical peak and decline resulting from the ion reflection 

coefficient, R.  The angular dependence of sputter yield is shown to increase for 

increasing angle of incidence, before peaking at critical angle θp and falling to zero for 

grazing incidence.  Reprinted with permission  from the Journal of Vacuum Science and 

Technology B, copyright 1986, American Vacuum Society.
273 

a) 

b) 
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Figure 1.3: Schematic representation of sputter depth profile.  Sigmund demonstrates the 

influence of ion penetration depth and the distribution of the sputter cascade on sputter 

erosion.  The offset between the point of ion impact and the point of maximal sputter 

yield is shown to result.  Reprinted with permission from the Journal of Materials 

Science, copyright 1973, Springer.
51

 



41 

 

 

 

Figure 1.4: Schematic representation of the distribution of ion energy within the target 

substrate.  The arrows demonstrate path of ion approach for two distinct angles of 

incidence.  The distribution of ion energy is shown in green.  Sputtering occurs most 

frequently at points where the energy distribution and surface overlap.  (a) For a steeper 

angle of incidence, the overlap is less.  (b) For glancing incidence, this overlap increases, 

leading to an increased sputter yield. 
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Figure 1.5: Flat-plane representation of first-order sputter erosion sharpening.  Each 

plane erodes at a velocity related to the sputter yield at the corresponding angle of 

incidence.  Ultimately, those planes which translate at maximal velocity are found to 

supersede all other planes.  This simple model explains the relationship between the 

resulting cone angle and the relation between sputter yield and angle of incidence.  The 

cone angle is twice the angle corresponding to maximal sputter yield. 
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Figure 1.6: The “Chamber A” UHV system employed in this dissertation.  Indicated with 

red arrows are the sputtering chamber where sputter erosion is performed (right), the 

preparation chamber where sample and tip cleaning and other preparation techniques are 

performed (center), and the scanning tunneling microscope (STM) chamber, where the 

microscope is located (left). 
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Figure 1.7: A schematic representation of the Lyding model scanning tunneling 

microscope employed in this dissertation.  Diagram courtesy of Professor J. Lyding. 
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CHAPTER 2 

FIELD-DIRECTED SPUTTER SHARPENING 

 

In this chapter we explore FDSS, a modified sputter erosion sharpening process 

capable of producing metallic tips with 1 – 5 nm radii of curvature.  We will explain the 

sharpening procedure in detail and demonstrate its efficacy for sharpening of platinum-

iridium alloy, polycrystalline tungsten, and diamond-like carbon (DLC).  We also explore 

the subject of off-axis FDSS, for cases where the ion beam is unidirectional but oriented 

non-axially to the probe, and provide experimental demonstration of this effect. 

We then offer a theoretical model for an ion flux in the vicinity of a biased probe, 

based on the simplifying assumption of the probe tip as a perfectly conducting biased 

wire in isolation, model the variation of ion flux with probe bias, and simulate the sputter 

erosion process.  Some of the elements of this chapter we have discussed previously by 

the author.
68

  These results will be reviewed here, and additional data presented. 

Section 2.1 will describe the FDSS process in general, and specific experimental 

results will be presented in Section 2.2 for Pt-Ir alloy, and in Section 2.3 for W.  We will 

discuss off-axis sputtering in Section 2.4.  Section 2.5 will discuss FDSS of less 

conductive materials such as DLC.  Section 2.6 will describe theoretical models of FDSS, 

including a mathematical model of ion paths, finite element analysis of ion paths, and a 

Monte Carlo simulation of sputter erosion for FDSS and CSE. 

 

2.1. Field-Directed Sputter Sharpening 

FDSS is a process related to CSE, but altered by the application of a positive 

probe bias, which serves to deflect the ion beam from the probe apex in a controllable 
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manner.  A flux of inert gas ions is oriented axially along the axis of the probe wire and 

tip, which has been previously sharpened to radius < 1 μm using other methods.  These 

energetic ions are deflected by the electric field surrounding the probe, and some 

ultimately impinge upon the tip.  From the point of impact, erosional processes follow the 

physics described in Section 1.3 for CSE. 

Two related factors influence the results of FDSS processing: modification of the 

ion path and therefore angle of incidence, and a controllable and preferential reduction of 

flux and surface diffusion in the apex region.  We also gain the additional benefit of tip 

shank shielding, where the deflected ion beam does not impact areas distant from the 

apex.  This shielding effect leads to a reduced etching rate and preserves any desirable 

structure on the probe shank. 

 

2.2. Sharpening of Platinum Iridium Alloy Probes 

To demonstrate the FDSS process, we employ an STM tip composed of Pt-Ir 

alloy (90% Pt, 10% Ir).  This is a popular probe material due to its resistance to oxidation, 

acceptable mechanical properties, and the high work function of Pt (5.64 eV).  For our 

purposes, the main advantage is oxidation resistance and the resulting ability to transfer 

probes between sputtering and characterization chambers without concern for the 

chemical and structural changes induced in other materials (e.g. tungsten) under ambient 

conditions. 

Pt-Ir probes are prepared by two techniques.  Those reported here were purchased 

commercially from Materials Analytical Services (MAS) Incorporated (Suwanee, 

Georgia).  We refer to these tips as Pt-Ir-MAS probes.  In other cases, we etch probes 
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from Pt-Ir wire
39

 in CaCl2 solution.  We refer to these as etched Pt-Ir probes.  A typical 

TEM micrograph of a Pt-Ir-MAS probe is shown in Figure 2.1.  Note that the typical 

probe has a single apex with a radius of curvature of approximately 100 nm.  There is 

typically a thin layer of contamination on the probe apex, which we attribute to carbon 

contamination arising from the etch process.
274

  On some occasions we observe 

significantly thicker contaminant films, but these are easily removed by sputtering. 

In one experiment, a Pt-Ir-MAS probe is characterized by TEM and then 

processed by FDSS. The probe is biased at 400 V relative to vacuum chamber ground 

while 2000 eV Ne ions are directed along the axis of the probe wire.  Several subsequent 

processing cycles are carried out under identical conditions, and the tip geometry is found 

to change significantly.  Initial and final TEM micrographs are shown in Figure 2.2, and 

we see that the initial 100 nm tip radius is reduced to less than 1 nm.  During the sputter 

sharpening process, successive TEM micrographs are taken at various sharpening stages.  

As seen in Figure 2.3, the tip radius progressively decreases towards equilibrium. 

The final radius of curvature of the Pt-Ir probe is substantially smaller than those 

previously reported for tips prepared by CSE and represents the sharpest known STM tip 

prepared by sputter erosion. 

Additionally, in comparison to later experiments discussed in this dissertation, 

this experiment employed a reduced ion current density (resulting in slower sharpening) 

and a lighter ion species (Ne rather than Ar).  Both of these variables are expected to 

further reduce the achievable radius of curvature. 
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2.3. Sharpening of Tungsten Probes 

Polycrystalline tungsten probes are commonly employed in STM due to their ease 

of preparation and low cost.  Tungsten probes produced by NaOH ECE can be further 

sharpened with the FDSS procedure, under conditions similar to those employed for Pt-Ir 

alloy.  As a disadvantage, the ambient exposure required before TEM characterization 

commonly results in oxidation of the probe apex prior to analysis.  This difficulty is 

eliminated if electron microscopy is foregone in favor of immediate transfer to UHV.  

Results of STM characterization will be discussed in Chapter 4. 

Several demonstrations of tungsten probe sharpening are provided in Figures 2.4 

and 2.5.  In each case, the probe radius is found to be significantly reduced from initial 

conditions, and such a result is found to be typical for similarly prepared probes.  Starting 

from an initial radius between 10 nm and 100 nm, we find final tungsten probe radii to 

fall to within a range of 1 – 5 nm, a substantial improvement over previous results from 

the literature discussed in Chapter 1.  It is believed that ambient exposure and 

electrostatic discharge adversely affect these tungsten probes during transfer, resulting in 

oxide growth.  This growth appears predominantly at the probe apex, as expected, and 

results in detectable blunting of the tip prior to characterization. 

 

2.4. Off-Axis Sputter Erosion Sharpening 

We now explore the nature of off-axis FDSS, where the ion beam is unidirectional, 

but is misaligned with the axis of the probe wire.  In a result consistent with CSE of 

surfaces, we note that sharpening produces a similarly sized, sharp single-apex when 

compared to axially aligned FDSS.  However, the tip is oriented along the path of the ion 
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flux, rather than the axis of the probe wire.  Starting from a polycrystalline W tip 

prepared by ECE (Figure 2.6a), we process the tip by FDSS (Vbeam = 2000 V, 

Vtip = 400 V: Vr = 0.2). The resulting tip has a <5 nm radius of curvature on the primary 

apex, but this apex is no longer axially oriented to the wire.  This demonstration of off-

axis FDSS suggests that precise alignment of the probe wire to the ion beam is not 

required for FDSS and that creation of novel tip geometries may be enabled by control of 

the sputtering geometry. 

 

2.5. Sharpening of Diamond-Like Carbon Probes 

Given its dependence on a field-directed ion flux, FDSS is generally applicable only 

to conductive materials.  In the case of a more insulating tip, charge accumulation 

resulting from bombardment by a positive charged ion species counteracts the deflective 

influence of biasing.  Sharpening occurs in the case of highly resistive materials, but the 

result more closely approximates that of CSE, with a larger equilibrium radius of 

curvature. 

We have explored several materials in this dissertation, often targeting materials 

with properties suggestive of a stable, long-lived STM tip.  In Chapter 3 we explore HfB2 

for this purpose, but in earlier work we considered a resistive coating of diamond-like 

carbon (DLC), deposited by physical vapor deposition (PVD) by Richter Precision (East 

Petersburg, Pennsylvania). 

We first prepare a polycrystalline W tip by ECE and sharpen it by FDSS 

(Vbeam = 1200 V, Vtip = 200 V: Vr = 0.167). The resulting tip has a sharp single-apex, but 

oxidized significantly following ambient exposure (Figure 2.7a).  This tip was spot 
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welded to the head of a stainless steel bolt passed through a threaded hole in a Cu block.  

The screw was then recessed into the Cu block for protection during shipping and 

handling.  After receipt, with the tip still recessed, the entire block was coated using 

Richter Precision’s Titankote
TM

 C11 DLC PVD coating technology.  This process 

produces a film with the specifications shown in Table 2.1.
275

 

 

Table 2.1: Properties of PVD Titankote
TM

 C11 DLC films from Richter Precision 

Composition DLC (a-C:H) 

Thickness (μm) 1.0 – 4.0 

Micro-hardness (HV) 2000 – 3000 

Coefficient of friction 0.1 

Process temperature (°C) 204 

 

After coating, the tip was shipped back to the University of Illinois for 

characterization.  It exhibited a single rounded apex with a ~300 nm radius of curvature 

(Figure 2.7b).  The original W core was clearly visible through the deposited film.  

Adhesion of the continuous DLC coating to the W core was good, with a smooth surface 

at the tip apex.  The gaps visible on the coated tip are a result of the wire orientation 

within the recess, where one side of the tip was oriented away from the PVD source.  

Away from the apex, the films exhibited a columnar microstructure. 

The tip was then processed by FDSS (Vbeam = 1600 V, Vtip = 400 V: Vr = 0.25), 

resulting in a single apex with a 15 nm radius of curvature, significantly blunter than 

conductive FDSS probes, but sharper than the initial tip and consistent with CSE (Figure 

2.7c).  It is important to note that this sharpening process was completed without 
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stripping the DLC coating from the W tip.  Therefore, even for insulating coatings, it is 

possible to sharpen a very thin DLC film (e.g. for AFM applications). 

Attempts to employ this tip for STM were limited by its low conductivity.  Stable 

scanning and spectroscopy were ultimately achieved; however, subsequent TEM images 

clarify the origin of this stability.  As shown in Figure 2.7d, the DLC probe apex 

fractured during scanning, exposing the W core. 

We conclude that DLC is a poor material for STM tips, due to its low conductivity.  

However, the use of DLC for non-conductive AFM tips is worthy of further exploration.  

Furthermore, increasing the conductivity of diamond or diamond-like materials by 

doping may improve sharpening efficacy.  Although FDSS is generally incompatible with 

resistive materials, the benefit of sputter erosion sharpening remains, and the resulting 15 

nm radius of curvature remains exceptional for the sharpening of DLC. 

 

2.6. Simulation of Field-Directed Sputter Sharpening 

Here we describe a simple model for ion deflection during FDSS and compute the 

variation of apex ion current density as a function of probe bias.  We model the tip apex 

as an infinite, perfectly conducting cylinder, which is bombarded transversely with a 

positively charged energetic ion beam while biased positively.  Following the derivation 

that we have described previously,
68

 we write the well-known equation of the electric 

potential in which a singly ionized atom sits when in the vicinity of this infinite wire: 
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This represents a repulsive Kepler potential,
276

 and thanks to the study of planetary 

motion (a related, attractive Kepler potential) by Johannes Kepler, we can immediately 
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write an equation describing the motion of a singly-ionized atom passing near the wire, 

which follows a hyperbolic path: 
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Where m is the mass of the ion species, E is the initial ion energy (qVbeam), (r,θ) are 

polar coordinates describing the position of the ion, θ0 is a constant of integration, and L 

is the angular momentum given by: 
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Since we can assume the ion approaches from an infinite distance, r→∞ as θ→π/2, 

we can determine the constant of integration: 
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From here, given initial conditions (ion energy, initial offset from the probe apex, 

ion species) we can compute the path of each ion, determining when and where the probe 

is impacted.  In Figure 2.8 we model several typical paths for a 2 keV initial ion energy 

and 1 keV probe bias (Vr = 0.5).  The probe in our model has a 10 nm radius of curvature, 

and we show ion offsets of 5 nm, 7 nm, 9 nm, and 12.5 nm.  As expected, each ion 

follows a hyperbolic path away from the probe apex. 

This deterministic model then allows us to calculate the expected ion current density 

at the probe apex under various sputtering conditions.   We will first assume that the 
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initial ion flux is uniformly distributed.  Although the ion flux actually has a Gaussian 

distribution, this assumption is reasonable because the ion beam diameter is ~2 mm and 

our region of interest is ~100 nm. 

To determine average ion flux across the probe tip, we need simply to determine 

which range of initial positions leads to sputter erosion of the probe, and which range 

leads to full deflection such that no sputtering occurs.  We note that the largest initial 

offset for which impact occurs will be that for which the ion impacts at a 90° glancing 

angle of incidence (Figure 2.9).  This condition relates to the case where the ion path is 

perpendicular to the vector r, at the point where r equals the tip radius, Rt.  To determine 

this, we compute: 
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Noting that C and e are finite and e is non-zero in the case of a repulsive potential, 

the solution to this equation corresponds to the case where the sine term is zero: 
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The case for which this occurs at the outer edge of a tip of radius Rt corresponds to: 
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Solving this equation, we note that the tip bias and initial ion energy enter the 

equation only as the ratio, and we introduce the Vr term as follows: 
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In route to solving for x0 we combine Equations 2.2 and 2.9 to produce: 
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This equation has a simple solution: 

rt VRx  10      (2.12) 

From these calculations, and an approximation of the relationship between yield and 

angle of incidence, it becomes possible to explain the influence of modified angle of 

incidence on sputtering.  In Figure 2.10a, we show the calculated sputter yield at each 

position across the tip apex for a 5 nm radius probe.  The zero point corresponds to the tip 

apex, and the 5 nm point corresponds to the edge of the tip.  In the CSE case, as expected, 

yield increases as we move away from the apex, and the angle of incidence changes 

accordingly.  Because the tip is modeled as an isolated wire, this yield drops to zero at 5 

nm.  For FDSS, a similar increase in yield is seen, but we see increased sputtering yield 

along the sides of the tip and an inward shift in the point of maximal sputtering yield.  As 

the size of the tip decreases, the curve scales proportionally.  Calculating this result 

demands the approximation of the dependence on angle of incidence of the sputtering 

yield.  We employ a simple model which represents the basic trend, as shown in Figure 

2.10b.  The leading edge of the curve is a cosine relationship, and the falling tail is 

accommodated by multiplying by a correction factor at shallow angles. 

We compare this mathematical analysis to a finite element model of a more realistic 

tip structure in two dimensions, shown in Figure 2.11a.  We simulate a number of ion 

paths around the tip by an iterative electric potential computation on a 2.5 Å square mesh, 

with an iterative Poisson solver and the Jacobi method.  Zero field-conditions are applied 

at the left and right boundaries, and the electric potential is fixed to ground at the upper 

edge and Vt at the lower edge.  The tip is assumed to be at a uniform electric potential.  

Within each square of the mesh the ion path is computed deterministically by Newtonian 
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mechanics, and the path is computed recursively until impact with the tip occurs or the 

ion leaves the system.  For various values of Vr, the average ion current density is 

determined by simulating ion flux and determining the range of initial positions for which 

probe impact occurs.  The results of these simulations are plotted in Figure 2.11b.  Also 

shown is the solid curve corresponding to Equation 2.12, in exceptional agreement with 

the results of finite element analysis. 

We further simulate the FDSS process by a Monte Carlo simulation of the sputter 

erosion process similar to the work of Hartmann et al.
277

  Following an ion impact event, 

“atoms” corresponding to pixels in the tip image are removed from the system with a 

probability determined from Sigmund’s second-order sputter erosion theory,
46

 with 

spread determined by TRIM and a “deflection” parameter inserted manually to account 

for ions with a high angle of incidence.  The process is calibrated to experimentally 

determined sputter yields for the ion species and substrate material employed (Ar and 

W).
66

  The sputter erosion process then proceeds, with ions injected randomly and 

uniformly across the tip, and is allowed to follow the electric potential induced by the tip 

bias.  The electric potential surrounding the probe is recalculated iteratively following ion 

impact.  Though the process is inefficient, it is suitable for the small systems here studied.  

The results of sputter erosion are shown in Figure 2.12.  We find that the tip sputtered 

under CSE (Vbeam = 1600 V, Vtip = 0: Vr = 0) has a more significant microstructure along 

the shank, with ~10 nm features.  In contrast, the tip processed by FDSS (Vbeam = 2000 V, 

Vtip = 400 V: Vr = 0.2) has a smooth edge, with ~1 nm features.  Because the simulation 

does not fully account for surface diffusion, we do not consider the simulated radius of 
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curvature of the apex to be a suitable metric, yet the distinction between sputtering 

techniques is clear. 

 

2.7. Discussion 

The FDSS technique is found to produce exceptionally sharp probes and to be self-

limiting and reproducible.  Of note is the relative improvement seen when compared with 

the CSE technique.  The radius of curvature for some probes was found to be ~1 nm, 

below the 1.6 nm projected range for 1.6 keV Ar in Pt reported by TRIM, although in 

general this range was expected to offer a lower bound for sharpening procedures.  We 

find that sharpening of less conductive materials, such as DLC, leads to blunter tips, 

likely as a result of charge accumulation neutralizing the influence of probe bias.  

Simulation results suggest that the improved sharpening efficacy of FDSS is due to a 

combination of modulated ion path and reduced ion current density at the probe apex. 
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2.8. Figures 

 

Figure 2.1: Transmission electron micrograph of a typical MAS Pt-Ir probe.  The radius 

of curvature is approximately 100 nm and a mild surface contamination layer is visible. 
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Figure 2.2: Sharpening of a MAS Pt-Ir probe subjected to FDSS. An ion energy of 2 keV 

and probe bias of 400 V were employed for 195 minutes.  (a) Initial probe form. (b) Final 

probe form. Radius of curvature is reduced to ~1 nm. 

a)

b)

100 nm 

20 nm 
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Figure 2.3: Comparison between subsequent erosion stages of a platinum iridium probe 

subjected to FDSS.  An ion energy of 2 keV and probe bias of 400 V were employed.  

Time intervals between images are (from top to bottom): 75 min, 60 min, 30 min, 30 min.  

Initial and final images correspond to those shown in Figure 2.2. 

  

100 nm
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Figure 2.4: Demonstration of FDSS on a polycrystalline W probe.  (a) Initial probe.  (b) 

Final probe.  Ion energy of 2 keV and probe bias of 400 V were employed for 15 min.  

The final probe radius of curvature is 1 – 2 nm when measured at the subsurface W layer. 
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Figure 2.5: Further demonstration of polycrystalline tungsten sharpening.  Ion energy of 

2 keV was employed and a probe bias of 400 V was applied during sputtering, which 

proceeded for 35 min.  (a) Initial probe.  (b) Probe following FDSS. 
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Figure 2.6: Demonstration of off-axis sputter erosion sharpening of W.  (a) Initial tip.  

(b) The sharpened tip, following off-axis sputter erosion.  The tip axis and ion flux 

direction are shown, and the sharpened apex is aligned with the ion flux. 

Ion flux

Tip axis

200 nm200 nm

a) b)
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Figure 2.7: Preparation and sharpening of a DLC STM tip. (a)  W tip has been sharpened 

by FDSS to a <5 nm radius of curvature.  (b) This tip has been coated commercially with 

a DLC film to a thickness of ~300 nm, resulting in a ~300 nm radius of curvature.  (c) 

This tip has been sharpened by FDSS, resulting in a ~15 nm radius of curvature DLC tip.  

(d) After use in the STM, this tip was damaged. 

 

20 nm

200 nm

500 nm

500 nm

a) b)
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Figure 2.8: Simulation of several singly ionized Ar ion paths around a biased probe.  

Probe bias is 1 kV with initial ion energy of 2 keV and tip bias of 1 kV (Vr = 0.5).  Initial 

ion positions are shown (50 Å, 70 Å, 90 Å, 125 Å). 
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Figure 2.9: Calculated ion path for a glancing impact, as determined by Equation 2.9.  In 

this system, ion energy was 2 keV, and the probe was biased to 1.4 keV.  The radius of 

the probe was fixed at 100 Å, and singly ionized argon ions were assumed. 
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Figure 2.10:  Calculated sputter yield data.  (a) Calculated sputtering yield relative to 

distance from the apex of a 5 nm diameter tip for both CSE (black) and FDSS (red) 

sharpening where FDSS uses 2000 eV ions with a 1000 V tip bias and CSE uses 1000 eV 

ions with a grounded tip.  Sputtering yield is compressed near the tip apex; with an 

increase in yield across the edge of the tip.  (b) Curve representing the approximated 

yield versus angle relationship employed to calculate the curves in (a). 
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Figure 2.11: Simulation of ion flux in FDSS.  (a)  Simulated ion paths resulting from 

finite element analysis.  Scalebar: 20 nm. (b) Variation of average ion flux at the tip apex 

as a function of Vr (squares).  This result agrees well with the calculation based on the 

simple model of an infinite, perfectly conductive wire (solid line). 
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Figure 2.12: Monte Carlo simulations of FDSS performed on W tips with singly ionized 

Ar atoms.  (a) The grounded probe (1600 eV ions) has a significant roughness of ~10 nm.  

(b) The FDSS probe (2000 eV ions, 400 V tip bias) has much smaller surface roughness 

of ~1 nm. 
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CHAPTER 3 

HAFNIUM DIBORIDE AS A PROBE MATERIAL FOR SCANNING 

TUNNELING MICROSCOPY 

 

One long-standing goal of the STM community is the fabrication of ultra-sharp, 

stable, and resilient probe tips designed to provide reliable atomic resolution imaging and 

patterning while resisting the detrimental influences of tip-sample interaction and 

remaining structurally invariant under the influence of adsorbate transfer from the 

surface.  Many materials have been explored to address several of these issues.  For 

example, the use of Pt tips eliminates the troubles of tip oxidation during transfer 

between preparation and scanning equipment.  Tungsten is a common choice due to its 

hardness and relative affordability.  In the case of AFM, diamond tips are popular, but 

diamond films sufficiently conductive for STM are difficult to fabricate. 

Because different applications demand different characteristics in their probes, no 

single material is the perfect choice. Because tips with tailorable electronic, chemical, 

and mechanical properties are ideal, we seek a universal technique for the coating of pre-

sharpened STM tips with a range of materials, which can then be sharpened with FDSS 

without the removal of the applied coating.  As an example, we explore HfB2.  As 

discussed in Chapter 1, HfB2 can be deposited as a conformal coating onto a variety of 

materials, including W.  Among its attractive properties are extremely high hardness (20 

GPa in the amorphous state, versus 3.4 GPa for W) and chemical stability.  Perhaps most 

importantly for our purposes, HfB2 has a high electrical conductivity (for a ceramic). 

In Section 3.1 we will present our HfB2 deposition technique, performed in 

collaboration with Dr. Navneet Kumar and Professor John Abelson of the Department of 
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Materials Science and Engineering at the University of Illinois at Urbana-Champaign.  

Then, in Section 3.2 we will present the results of coating sharpened W STM tips, and 

sharpening these films by FDSS.  In Section 3.3, we will present our STM results 

demonstrating the successful application of HfB2 tips to microscopy and spectroscopy. 

 

3.1. Hafnium Diboride Chemical Vapor Deposition 

Deposition of hafnium diboride film is performed in a turbo pumped high-vacuum 

chamber with a background pressure < 5 × 10
-8

 Torr.  During deposition, the probe is 

heated and exposed to the Hf(BH4)4 precursor.  Film thickness is measured on an adjacent 

silicon wafer by ellipsometry during growth and verified by transmission electron 

microscopy of the STM tip.  During deposition, tip temperature is nominally maintained 

at 290 °C, and growth rate is approximately 2.5 Å/s.  Following deposition, the film is 

characterized by scanning electron microscopy (SEM) (Figure 3.1a) and energy-

dispersive X-ray spectroscopy (EDX) (Figure 3.1b). 

 

3.2. Coating and Field-Directed Sputter Sharpening: Hafnium Diboride 

The procedure for fabricating HfB2 probes has four steps.  We first produce a W 

tip with a 10 – 100 nm radius of curvature by ECE.  With TEM, we verify that the tip 

radius is within this acceptable range and has a single apex.  We then sharpen this tip by 

FDSS, producing a W tip with a <5 nm radius of curvature.  Next, we deposit a ~100 nm 

film of HfB2 on the W tip, increasing the radius of curvature to ~105 nm.  We then 

sharpen the HfB2 tip by FDSS, producing a tip with the properties of HfB2 and a radius of 

curvature below 5 nm, without the need for fabricating HfB2 wires or ECE of bulk HfB2.  
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The entire process flow is shown schematically in Figure 3.2a, where W is shown in 

black and HfB2 in semi-transparent green. 

Following deposition of a 75 nm nominal coating of HfB2, we are left with a W-

HfB2 tip with a 75 nm radius of curvature, shown in Figure 3.2b.  This is consistent with 

deposition atop a sharp W tip.  Note that the film coats the extremely sharp probe apex 

conformally.  The surface of the tip has a roughness of  approximately 5 – 10 nm, but as 

we shall see this is reduced following FDSS. 

We then sharpen the W-HfB2 tip by FDSS (Vbeam = 1200 V, Vtip = 200 V, 

time = 60 min), after which the radius of curvature has been reduced to 4 nm, surface 

roughness reduced to ~1 nm, and most asymmetry eliminated.  The resulting tip is shown 

in Figure 3.2c. 

The resulting tip is extremely sharp in comparison with the deposited film, but we 

also note that CSE has been used previously to produce molybdenum tips of a similar 

size.
38

  Therefore, seeking to verify that the use of field-direction has significantly 

influenced equilibrium radius of curvature, we run a control experiment intended to 

compare FDSS with CSE.  The tip shown in Figure 3.2c is returned to the sputtering 

chamber and further processed under similar CSE conditions (Vbeam = 1000 V, Vtip = 0).  

After sputtering, TEM indicates that the radius of curvature has increased to 13 nm.  

Furthermore, the tip apex has become rougher, and additional asymmetry has been 

introduced, as shown in Figure 3.2d. 
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3.3. Scanning Tunneling Microscopy and Spectroscopy: Hafnium Diboride 

Given that the tip is half of the STM system, during spectroscopy a tip’s density 

of states can substantially convolve with the density of states of the sample.  Typically, 

the tip density of states is assumed to be constant, a reasonable first-order assumption in 

the case of a free-electron-like metal.  If a tip is resistive, any voltage drop across the tip 

distorts the observed band structure of the substrate (e.g. a band gap will appear larger 

than anticipated). 

 As we are employing a novel tip material such as HfB2, we must explore not only 

the stability and lifespan of probes during microscopy, but also the stability and accuracy 

of spectroscopy.  To do so, a HfB2-coated W tip is sharpened by FDSS, transferred to a 

UHV preparation chamber for a 600 °C degas, then transferred to a UHV-STM chamber 

for imaging of the well-understood Si(100) 2 × 1:H surface. 

 We first note, as seen in the representative image of Figure 3.3a, that HfB2 STM 

tips provide stable imaging with immediate and consistent dimer resolution.  We do note 

that this tip had a slight multiple tip with apex separation <1 nm, an observation 

consistent with the 4 nm tip radius produced, but not seen in the case of W tips.  HfB2 

tips are found to provide stable scanning without any noticeable intrinsic tip changes over 

several weeks, a substantial improvement over W tips, which typically experience 

intrinsic changes over 60 – 300 min. 

 Also shown in Figure 3.3a are STS points, where STS data was collected with 

HfB2 STM tips.  Those marks shown in black were excluded from our data set because 

they are directly above a visible surface defect, such as a dangling bond or surface 

adsorbate.  Those marks shown in red are included in our analysis. In Figure 3.3b we 
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show a collection of constant-spacing STS data for this surface. Curves plotted in light 

gray are the original I-V data for each point, shown together.  The thick black curve 

overlaid is the average of all data. 

Several noteworthy observations can be made from this data.  First, the electronic 

structure of the surface is nearly invariant across multiple spectra points.  The variation 

we do observe is generally a doping effect, which leads to a shift in the Fermi level, and 

can be a result of nearby adsorbates or dopant atoms, and is therefore attributed to 

variations in the surface, rather than the tip.  The measured band gap is invariant across 

data points, and is consistent with the 1.1 eV band gap of Si when extrapolated to account 

for the noise floor in constant-spacing STS. 

HfB2 STM tips are also employed for the ESD of H from Si(100) 2 × 1:H.  In 

Chapter 4 we will discuss in detail the improvements offered by FDSS over alternate tip 

preparation techniques, but here we demonstrate that HfB2 tips afford stable, high-

resolution nanolithography.  The influence of desorption and its byproducts on the tip is 

minimal.  Figure 3.4a shows an example of a dimer-row desorption pattern in a false-

color three-dimensional rendering.  Red areas correspond to passivated Si, blue to Si 

dangling bonds which were present prior to pattern writing, and green to Si dangling 

bonds generated by the STM tip.  We see in this case that the pattern is extremely sharp, 

but that several spurious depassivation sites are visible.  These defects could be a result of 

secondary electron emission from the surface.
100

  As we will explore in Chapter 4, ultra-

sharp STM tips seem to have minimal spurious depassivation, and extremely sharp 

pattern profiles.  The HfB2 tips shown here have a slightly greater radius of curvature (~4 
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nm) than ultra-sharp W and Pt-Ir probes used in Chapter 4, and this may account for the 

small amount of spurious depassivation. 

 

3.4. Discussion 

The most apparent conclusions that we draw from the results of this chapter are 

the conformal coating of ultra-sharp STM tips by HfB2, particularly in the small-radius 

apex region, the reduction in radius of curvature afforded by FDSS, and the high-

resolution and long-term stability afforded by HfB2 coated tips. 

Like the diamond-like carbon (DLC) tips in Chapter 1, HfB2 films provide a 

rounded single-apex tip.  However, in contrast to the columnar structure of DLC, HfB2 

films are smooth along the tip shank. The surface roughness observed on CVD films is 

consistent with earlier studies of CVD-deposited HfB2.
108

  We do not explore the 

influence of film thickness on conformality, although it could be the subject of future 

study. 

We find that FDSS affords improved sputter sharpening of HfB2 films, when 

compared with the equivalent CSE process.  We do note that FDSS-treated HfB2 tips are 

slightly blunter than W or Pt-Ir tips, but their radius remains substantially smaller than 

that of our control tip.  Furthermore, it is believed that further optimization by adjustment 

of FDSS parameters, temperature reduction, and global ion flux reduction may ultimately 

bring the achievable radius in line with other materials. 

As imaging probes, sharpened HfB2 tips prove exceptionally stable throughout 

days and weeks of scanning, and provide consistent dimer-resolution imaging and 
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lithography.  STS data exhibit constant-spacing spectroscopy typical of Si(100) 2 × 1:H 

and are remarkably consistent. 

Perhaps most importantly, the sharpening of encapsulated probes is a 

generalizable process.  In principle, any conductive coating can be selected, thus enabling 

us to tailor the properties of our tips to fit specific applications.  In addition to having a 

range of desirable chemical and mechanical properties, tailored probe materials have a 

range of applications.  For example, Ag and Au are favorable for tip-enhanced Raman 

spectroscopy,
278

 while Pd is of interest due to the reversible formation of palladium 

hydride.
279

  Some metals, such as Cu, catalytically form graphene,
280

 enabling the 

formation of graphene-encapsulated tip structures. 
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3.5. Figures 

 

 

Figure 3.1: Deposition of HfB2 film on a W core and elemental analysis by energy-

dispersive X-ray spectroscopy (EDX).  (a) SEM image of the shank of a HfB2-coated 

STM tip.  Scale bar: 2 μm.  (b) EDX spectra from the shank of the tip.  The image is 

primarily composed of Hf, B, O, W.  Sensitivity of the instrument to B is low, leading to 

a small peak.  The W signal arises from the W core.  The O signal arises from both W 

oxide in the core and a thin ~1 nm oxidation layer at the suface of the HfB2. 
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Figure 3.2: Demonstration of hafnium diboride tip sharpening.  (a) The process of 

coating and sharpening the tip is shown schematically.  First, a tungsten tip is prepared by 

ECE, producing a radius of curvature of 10 – 100 nm.  Then, the W tip is sharpened by 

FDSS to produce a radius of curvature <5 nm.  The sharpened tip is coated with a 

uniform film of HfB2, producing a radius of curvature approximately equal to the film 

thickness.  Finally, the coating is sharpened by FDSS to produce an ultra-sharp HfB2 tip.  

(b) W STM tips coated with a 70 nm nominal amorphous HfB2 coating.  The measured 

radius of curvature is 75 nm and is approximately the sum of the 70 nm thick film and the 

~5 nm oxidized W tip.  Scale bar: 100 nm.  (c) The same tip after FDSS sharpening, with 

a 4 nm radius of curvature.  Scale bar: 20 nm.  (d) The results of a control experiment.  

The tip shown in (c) was further sputtered with the tip bias removed and accelerating 

voltage reduced to keep landing voltage constant.  The resulting radius of curvature 

increases to 13 nm.  Scale bar: 20 nm.  

a) b)

c) d)
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Figure 3.3: STM and STS of Si(100) 2 × 1:H. Data collected with a HfB2 coated W STM 

tip.  (a) Typical STM image demonstrating dimer-row resolution on the Si(100) 2 × 1-

reconstructed surface.  The tip is stable, which was typical of imaging over the course of 

several weeks.  Crosshairs correspond to areas where spectroscopy data was taken.  Black 

cross hairs were excluded from analysis due to the presence of a defect in the area.  Scale 

bar: 10 nm.  (b) Current-voltage spectroscopy data corresponding to the red crosshairs in 

(a). 
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Figure 3.4: Topographic images of nanolithographic patterns generated by HfB2 STM 

tips on Si(100) 2 × 1:H. (a) False-color three-dimensional rendering of a dimer-row line.  

A single dimer row has been depassivated, with some spurious depassivation sites 

nearby.  Red corresponds to passivated Si.  Blue corresponds to pre-existing dangling 

bonds.  Green corresponds to dangling bonds generated by the HfB2 tip. (b) Original 2-D 

topography of the same pattern. 
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CHAPTER 4 

SCANNING TUNNELING MICROSCOPY AND HIGH-FIDELITY ELECTRON-

STIMULATED DESORPTION 

 

The ability to employ probes prepared by FDSS in the UHV-STM is of interest 

for purposes of atomically-precise substrate modification.  In addition to its imaging 

capabilities, STM offers the potential for selective chemical structuring of the substrate 

surface.  In this case, electrons tunneling from tip to surface will be employed for the 

selective desorption of hydrogen, generating a chemically-reactive dangling bond within 

a H-based electron-beam resist.  This process can be performed either as a single-electron 

process in the field emission regime by directly elevating the bonding electron to an 

antibonding state, or via a vibrational heating mechanism at lower electron energies. 

Specifically, FDSS probes produce exceptional electron-stimulated desorption 

patterns on the Si(100) 2 × 1:H surface. 

 

4.1. High-Fidelity Patterning of the Si(100) 2 × 1:H Surface 

The STM provides an excellent tool for tip characterization, although the width of 

lithographic patterns written by the STM is a less direct measure of probe sharpness than 

the radius of curvature measured by TEM.  However, as lithography is the ultimate goal 

of this experiment lithographic line widths are arguably the best possible metric.  As the 

spatial distribution of the electron tunneling current is dependent on probe radius, 

electron-stimulated patterning offers a reasonable technique for probe apex 

characterization.  The quality of FDSS probes in STM can be demonstrated by high-

resolution imaging, but more importantly by high-fidelity lithographic patterning. 
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Substrate patterning can be modeled simply by assuming a Gaussian spatial 

distribution for the electron tunneling current and a single-electron desorption process.  In 

Figure 4.1 we show a typical tunneling current profile and desorption profile for a sample 

bias of 6.5 V, tunneling current of 2 nA, line dose of 2 × 10
-3

 C/cm, 20 nm tip radius, and 

Pt-Ir probe.  The tunneling profile is dependent on tip radius and work function, but the 

manner in which this distribution translates into a desorption profile depends further on 

desorption yield and line dose.  Thus, for a given tip radius, the desorption profile can be 

tailored slightly to optimize registry with the atomic lattice.  However, there ultimately 

exists a lower limit to pattern width, at which point full desorption is no longer reliably 

obtained at the center of the lithographic pattern and the line becomes incomplete. 

We can employ a similar model to characterize typical lithographic lines 

produced under various patterning conditions.  In Figure 4.2, five lithographic lines are 

written with a 2 nA tunneling current and 2 × 10
-3

 C/cm line dose, using an etched Pt-Ir 

tip.  Sample biases vary and range from 4.5 V (lower left) to 6.5 V (upper right).  To 

analyze these lines, we take a cross section over the area indicated by the red box 

overlaid on the image.  We average over the length of the line, converting the discrete 

lattice sites into continuous desorption profiles.  To model this data as a desorption 

probability, and assuming that the line is continuous (that is, that the center of the line is 

fully depassivated), which we cannot assume here for the 4.5 V line, we isolate a single 

pattern, plane fit to accommodate the tilt of the sample, and normalize the data so that the 

fully depassivated peak corresponds to a desorption probability of one, while the fully 

passivated periphery corresponds to a desorption probability of zero. 
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 We can then compare the patterns produced by a specific STM tip to those 

predicted for given patterning conditions to extract an effective tip radius.  In Figure 4.3, 

we show desorption probabilities for both the 6.5 V and 6.0 V lines from the patterns 

shown previously.  The tip radius that best fits the data is 20 nm. 

 In order to optimize our patterning procedure, W tips are processed by FDSS, 

producing sub-5 nm radius probes.  These tips can then afford ultra-high resolution 

lithographic patterning, as shown in Figure 4.4.  Here we demonstrate the smallest pitch 

reliably achieved by FDSS probes.  In this case, two dimer rows (each two atoms wide) 

are patterned with a single two-atom wide dimer row between them.  The grayscale 2-D 

topographic image is shown in Figure 4.4b, and a false-colored 3-D rendering of the 

image is shown in Figure 4.4a.  The coloration identifies the surface’s patterning state.  

Red areas correspond to H-passivated Si.  Blue corresponds to Si dangling bonds or 

adatoms that were present prior to the patterning operation.  Green corresponds to Si 

dangling bonds that were generated by the patterning operation.  There are few 

imperfections in this pattern, although four spurious dangling bonds run along the edge of 

the rightmost line.  These dangling bonds may be a result of imperfect tip registry with 

the substrate, rather than the spatial distribution of the tunneling current.  A similar 

process is employed in Figure 4.5 to produce a 2-D lithographic box of reactive Si 

dangling bonds.  In both cases, patterning conditions included a sample bias of +4 V, a 

tunneling current of 2 nA, and a line dose of 2 × 10
-3

 C/cm.  Imaging was performed with 

a sample bias of −2 V and tunneling current of 50 pA. 
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4.2. Influence of Field-Directed Sputter Sharpening on Patterning 

In order to verify that FDSS has a significant influence on the patterning 

capabilities of W probes, we perform a series of experiments intended to compare the 

same tips following a three-step preparation process: etching, FDSS, and CSE as a 

control.  The lines patterned after FDSS consistently have higher resolution than those 

patterned by etched and control probes. 

In this experiment, a single polycrystalline W probe is sequentially sharpened by 

all three methods; and following each method, the probe is used for ESD of hydrogen 

from a Si(100) 2 × 1:H surface.  When the tip is sharpened by etching, the initial apex 

(Figure 4.6a) has a 5 ±1 nm radius of curvature (11.5 ±0.5 nm oxide radius).  The probe 

is then degassed above 400 °C for 8 hours in UHV and used repeatedly to write a series 

of lithographic lines (Figure 4.6b).  The tip is then removed from the STM and sharpened 

by FDSS.  From a TEM micrograph (Figure 4.6c) the tip radius is 2 ±1 nm (5.5 ±0.5 nm 

oxide radius). After the TEM study, the tip is reinserted into our vacuum system and 

resharpened by FDSS under identical conditions to remove native oxide. After the probe 

is degassed above 400 °C for 8 hours, it is again used to write a series of lithographic 

lines (Figure 4.6d).  Imaging and patterning resolution improve markedly. 

As a control, the tip is then sputtered under CSE conditions with a 1.0 keV ion 

beam and a grounded probe.  Inspection via TEM (Figure 4.6e) shows that the radius of 

curvature has increased to 8 ±1 nm (12.0 ±0.5 nm oxide radius). The tip is further 

sputtered under identical conditions to eliminate native oxide and is again degassed above 

400 °C for 8 hours before additional patterns are written. Imaging resolution is reduced; 



84 

 

tip instability is enhanced, as indicated by multiple tip changes within the image; and 

pattern width increases (Figure 4.6f). 

The ability to write patterns reproducibly is also markedly better for FDSS-

sharpened probes than etched probes (Figure 4.6h).  This improvement largely results 

from the removal of chemisorbed and physisorbed species during sputtering, but also 

addresses concerns about tip instability resulting from ion-induced radiation damage. 

Even in the absence of a high-temperature anneal, typical FDSS probes provide 

immediate and stable dimer resolution imaging. 

It is noteworthy that our ECE probe appears exceptionally sharp as judged by 

TEM (above the 95
th

 percentile of ECE tungsten tips from our facility), making our 

observation of improvement following FDSS even more significant. Hydrogen resist 

patterns produced by FDSS probes have reduced line widths compared to those made by 

both ECE and CSE probes. The FDSS probe generates line widths of 2.2 nm for 4.5 V 

patterns and 5.8 nm for 5.5 V patterns.  By comparison, the ECE probe generates 2.8 and 

7.9 nm patterns, whereas the control probe generates 2.7 and 7.3 nm patterns. Thus, the 

FDSS patterns exhibit a 21% (4.5 V) and 26% (5.5 V) reduction in line width over the 

ECE probe and an 18% (4.5 V) and 20% (5.5 V) reduction in line width over the control 

probe. This reduction in patterning width is verified to be statistically significant by a 

two-tailed Welch’s t-test (α = 0.10).  A comparison between FDSS and control patterns 

for both 4.5 V and 5.5 V patterns is presented in Figure 4.6g, and further data are 

provided in Figure 4.7.  Comparing ECE and CSE probes, we cannot reject the null 

hypothesis for 4.5 V (p = 0.50) or 5.5 V (p = 0.65) sample bias, allowing for the 

possibility that CSE offers no improvement over a sharp ECE probe. 
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In a subsequent experiment, we verify the reproducibility of these results across 

multiple STM tips, and across multiple tip sputtering cycles.  A set of three ECE probes, 

with a range of apex radii, are selected by TEM (micrographs are shown in Figure 4.8) as 

clean and potentially stable STM tips.  The tips are sharpened and patterns written using 

the process described above and sample biases from 4 V to 8 V.  Each tip was sharpened 

by FDSS (Vbeam = 1400 V, Vtip = 400 V: Vr = 0.286) and, after patterning, sputtered under 

CSE conditions (Vbeam = 1000 V, Vtip = 0: Vr = 0).  Tip C received damage unrelated to 

sputtering and scanning before the control experiment, but ECE and FDSS data are 

shown for completeness.  Tip A was FDSS sharpened a second time after CSE patterning, 

and a second control experiment completed.  The resulting pattern widths are shown in 

Figure 4.9, where we see a clear and reproducible reduction in pattern width as we move 

from ECE tips to CSE tips and finally to FDSS tips, for which optimal resolution is 

achieved.  It is noteworthy not only that each tip exhibits improved patterning after 

FDSS, but that the images collected after FDSS achieve atomic resolution patterning 

from the very first scan (Figure 4.10).  Furthermore, the cycling of tip A through multiple 

FDSS and control cycles further demonstrates the reproducibility of FDSS not only from 

one tip to the next, but also for a single tip over multiple sputtering cycles. 

 

4.3. Probe Regeneration by Field-Directed Sputter Sharpening 

While operating within the STM, probes commonly undergo structural changes 

due, for example, to surface diffusion or mechanical contact with the substrate being 

analyzed.  Though the result of a “tip change” can be advantageous, for instance, by the 

creation of an atomically sharp point, more frequently imaging resolution suffers. Often 
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changes are reversible, though the recovery process is rarely deterministic and commonly 

involves aggressive tip-surface interaction until further structural modification occurs. 

Unfortunately, scanned probes remain a consumable item.  However, for mildly 

damaged probes, regeneration by FDSS is possible.  In this experiment, a polycrystalline 

tungsten probe was employed in the STM for imaging and patterning of the silicon 

surface.  Following extended scanning, the probe sustained damage and was unable to 

provide precise patterning.  Figure 4.11a includes a representative pattern produced by 

the degraded probe.  Though evidence of atomic-scale surface structure can be discerned, 

the electron-stimulated desorption patterns are broadened.  Additionally, the probe 

appears to have multiple apices, each of which provides an STM image of the surface in 

parallel.  As a result, multiple shadow images are visible on the surface for each line.  It 

was believed that the damaged probe used to generate Figure 4.11a would be a good 

candidate for regeneration via FDSS.  Without removal from high vacuum, the probe was 

subjected to FDSS processing with ion energies of 1.2 keV and a probe bias of 200 V.  

The probe was not imaged by TEM, but immediately degassed and returned to UHV for 

further use in the STM. 

The regenerated tip enabled stable imaging of the silicon surface, and high-

fidelity patterning by electron-stimulated desorption.  One representative pattern is shown 

in Figure 4.11b.  Of particular interest is the extreme patterning precision visible in this 

image.  Outside of the immediate patterns, which follow the atomic dimers of the surface, 

most dangling bonds are randomly distributed and created by imperfect sample 

preparation, instead of electron-stimulated desorption. 
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4.4. Discussion 

 In conclusion, the radius of probes has a marked effect on the width of patterns 

they produce.  We show that the desorption profile is a reasonable metric for the 

sharpness of a tip.  We then show that, under identical patterning conditions, tips 

prepared by FDSS produce significantly smaller patterns than those produced by ECE or 

CSE.  We also show that FDSS tips produce more consistent and reproducible patterns 

than etched tips, and that FDSS tips typically provide stable imaging from the first scan. 

 We also show that the improved patterning capabilities of FDSS-processed tips 

are reproducible across multiple tips and multiple FDSS/CSE cycles for the same tip.  

Finally, we demonstrate that FDSS enables the regeneration of damaged tips following 

STM.  Although this process is not a panacea, moderately damaged tips will benefit from 

subsequent FDSS treatment and can be used and reused numerous times over extended 

periods of time (sometimes months). 

 In conclusion, FDSS is a remarkable technique for the improvement of 

lithographic patterning, which provides consistent and reproducible patterning across 

multiple tips and moves towards the limit of atomically-registered and atomically-precise 

lithography. 
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4.5. Figures 

 

Figure 4.1: Simulated tunneling current profile (black) compared to the resulting 

desorption probability (blue).  
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Figure 4.2: Experimental extraction of desorption probability for a variety of 

lithographic patterns with sample biases.  (a) Topographic STM image with patterns 

written from 4.5 V (lower left) to 6.5 V (upper right).  (b) Topographic height is averaged 

along the length of each line within the red box in (a), producing the topographic contour 

shown.  This data is related to the desorption probability.  

25 nma) b)
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Figure 4.3: Comparison of experimental desorption probability with our model.  After 

normalization, experimental topographic contours are compared to models, and an 

effective tip radius is extracted.  In this case, the tip radius is 20 nm. (a) Topographic 

image of all lithographic patterns. (b) Desorption probability extracted from 6.5 V pattern 

(blue) compared to predicted pattern (black).  (c) Desorption probability extracted from 6 

V pattern (blue) compared to predicted pattern (black). 
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Figure 4.4: A demonstration of atomic-fidelity lithography by electron-stimulated 

desorption (ESD) of hydrogen from the Si(100) 2 × 1:H surface with a 4 V sample bias, 2 

nA current setpoint, 2 × 10
-3

 C/cm line dose and FDSS-generated tungsten probe.  STM 

images are collected with a sample bias of −2 V and a current setpoint of 50 pA.  All 

scale bars are 4 nm.  (a) Dimer-row line width lithography is demonstrated. The image is 

a false-color three-dimensional rendering where red represents passivated silicon, blue 

represents background surface features unrelated to patterning, and green represents 

dangling bonds generated by the ESD process. (b) The same pattern shown in its original 

form as a two-dimensional STM topograph. 
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Figure 4.5: (a) A nanolithographic box 20 × 13 atoms in dimension is shown as a false-

color three-dimensional rendering similar to that in Figure 4.4a. The feature has been 

generated by five successive depassivation patterns under identical patterning conditions. 

(b) Topographic STM data in two dimensions for the nanobox pattern. 
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Figure 4.6: The effects of probe sharpening on patterning capabilities. Each hydrogen-

resist pattern includes a sequence of lines corresponding to sample biases from lower left 

to upper right of 4 V, 4.5V, 5 V, 5.5 V, 6 V, and 6.5 V with constant tunneling current of 

2 nA and line dose of 2 × 10
-3

 C/cm.  STM images are collected with a sample bias of −2 

V and a current set point of 50 pA.  All scale bars are 30 nm.  (a) Transmission electron 

micrograph of an exceptionally sharp tungsten probe produced by ECE. (b) A 

representative pattern on the Si(100) 2 × 1:H  surface written by ESD of H using the 

ECE probe of (a). (c) Transmission electron micrograph of the probe following an FDSS 

sharpening procedure (1.4 keV ion energy, Vr = 0.286, 38 minutes). (d) A representative 

pattern created with this FDSS-generated probe. (e) Transmission electron micrograph of 

the same probe following control experiment sputtering (1.0 keV ion energy, Vr = 0, 60 

minutes). (f) A representative pattern created with the control probe. (g) Spatial 

distribution of desorption probability for FDSS and control probe patterns at 5.5 V and 

4.5 V sample bias. (h) Pattern stability achieved with an FDSS probe is compared to that 

of an etched probe.  All 5.5 V patterns generated by a probe before and after FDSS are 

shown.   
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Figure 4.7: Further data from desorption patterns created by etched, FDSS, and control 

probes. (a) Averaged data from each series of patterns created at 5.5 V sample bias.  The 

variation of widths is visible between FDSS and control cases, and also between FDSS 

and etched cases, though much of this variation results from a shoulder produced by the 

probe instability shown in Figure 4.6h.  However, the distinction between FDSS and 

etched probes becomes clearer for 4.5 V sample bias where the effects of any secondary 

apices in the etched probe are dramatically reduced.  (b) Averaged data from each series 

of patterns created at 4.5 V sample bias.  Here a clear distinction is drawn between FDSS 

and etched probes, and between FDSS and control probes. 
 

  

0 25 50 75 100 125 150 175

0.0

0.5

1.0

 

 

D
e

s
o

rp
ti

o
n

 P
ro

b
a

b
il

it
y

Position (Å)

 ECE

 FDSS
a)

b) c)

5.5 V Pattern

5.5 V Pattern 5.5 V Pattern

ECE

ECE ECE

FDSS

FDSS FDSS
CSE CSE

a) b) 



95 

 

 

Figure 4.8: Initial TEM micrographs of the tips used to generate Figure 4.9.  (a) Initial 

form of tip A.  (b) Initial form of tip B. (c) Initial form of tip C. Scale bars: 50 nm. 
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Figure 4.9: Further patterning results from multiple STM tips.  Each curve corresponds 

to a set of patterns written at sample biases between 5 V and 8 V.  Blue curves 

correspond to ECE tips, red to CSE tips, and green to FDSS tips.  FDSS clearly produces 

narrower patterns, and this is most clearly visible at high sample biases. 
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Figure 4.10: Initial imaging and patterning resolution from each of four FDSS cycles and 

three FDSS-processed probes.  In each case the first pattern written is shown, which 

corresponds to the second image collected.  Thermal drift was allowed to subside after 

the sample was loaded into the STM, but no additional tip treatments were employed to 

achieve this resolution.  In one case (c), the tip likely acquired an adsorbate during 

imaging, resulting in a slight multiple tip in the top half of this image.  This adsorbate 

became desorbed naturally in the course of the subsequent scan, the tip returned to its 

initial state, and no lasting effect was observed on the tip’s imaging and patterning 

capabilities, as shown in Figure 4.9.  Scale bars: 30 nm 
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Figure 4.11: Regeneration of damaged STM tips by FDSS. (a) Pattern resulting from 

ESD of hydrogen from the Si(100) 2 × 1:H surface using a patterning voltage of +4 V 

and set point current of 2 nA.  The STM image was collected with a sample bias of −2 V 

and a current set point of 50 pA. Scale bar: 30 nm. (b) Equivalent pattern generated by 

the same probe following FDSS (Vbeam = 1.2 kV, Vt = 200 V: Vr = 0.167).  Patterns were 

written with a sample bias of +4 V and a current set point of 2 nA.  The STM image was 

taken with a sample bias of −2 V and a current set point of 50 pA.  The round pattern 

visible in the lower left corner was produced by the extended presence of the STM tip at 

elevated sample bias.  Scale bar: 20 nm. 
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CHAPTER 5 

EXFOLIATION AND DECOMPOSITION OF PUCKERED-SHEET GRAPHITE 

FLUORIDE 

 

 

The most intuitive method for producing monolayer fluorinated graphene is also 

among the most difficult.  While the “scotch tape” mechanical exfoliation method has 

proven extremely successful in the production of monolayer graphene from graphite, 

when exfoliating from bulk graphite fluoride, the story is very different.  Despite the 

efforts of several groups,
17,25,27

 exfoliated monolayers of puckered-sheet graphite fluoride 

are  extremely difficult to isolate and prone to rupture.  As we shall see, the results of this 

dissertation further verify this fact, as monolayers produced are small and unstable, 

ultimately producing fluorine. 

In one application, functionalized graphene sheets must be selectively reduced by 

chemical or electron-stimulated means to generate metallic or semiconducting pathways 

within the basal plane.
14,249

 Scaling of these pathways provides continuous control of the 

graphene band gap. Therefore, an improved understanding of the mechanism by which 

this reduction proceeds is desirable. 

In this dissertation we demonstrate tip-induced desorption of fluorine from 

monolayer CF sheets on the Si(100) 2 × 1:H surface, as evidenced by variation in the 

height of CF flakes and monolayer pitting of the silicon lattice induced by desorbed 

fluorine.  More generally, this dissertation provides the first STM study of monolayer ds-

GF, and in particular the first integration of this compound with the Si(100) surface, and 

indicates that defluorination proceeds under scanning conditions that are commonly non-

destructive. These results also suggest the need to explore edge stability in (CF)n, and the 
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importance of single-sided fluorination in order to limit the influence of fluorine on the 

underlying substrate. 

 

5.1. Characterization of Bulk Exfoliated Graphite Fluoride 

Our source material is a commercially available graphite fluoride powder 

produced by Acros Organics.  As this material is primarily intended as a lubricant, 

its defect density is expected to be very high, and grain size very small.  To better 

understand the nature of our bulk material, we perform TEM and diffraction 

measurements, as well as X-ray photoelectron spectroscopy (XPS) of the bulk 

product.  For TEM, graphite fluoride powder is deposited on a Formvar-coated Cu 

TEM grid from n-methylpyrrolidone (NMP).  There are a few important 

limitations to this process.  First, on the basis of subsequent observations, we 

determine that NMP affords the partial reduction of graphite fluoride.  However, 

this is not a major limitation for us, because the observation of long-range 

structural order in partially reduced CF almost certainly implies similar order in 

the fully fluorinated bulk material.  Second, NMP dissolves Formvar, making this 

transfer process extremely inefficient.  Nevertheless, some small flakes of CF 

supported on Formvar remain following transfer, enabling the completion of this 

experiment.  For XPS, graphite fluoride powder is pressed into a thin sheet of Au 

foil and characterized in this form. 

The results of transfer to TEM grids and characterization of a thin flake by 

TEM and diffraction are shown in Figure 5.1.  The flake in question is ~1 μm 

wide, and exhibits the sixfold symmetric diffraction pattern typical of graphite or 



101 

 

graphite fluoride, suggesting the presence of structural order in the bulk material 

and saying little about the prevalence of defects therein. 

To better understand the nature of this material, we explore the XPS 

spectrum of the powder, which is shown in Figure 5.2.  The spectrum suggests a 

range of sp
2
 and sp

3
 chemical bonding, with multiple fluorine bonding 

configurations and a high density of defects.  However, the prevalence of covalent 

sp
3
 C-F bonding is clear, as expected for graphite fluoride in the puckered-sheet 

configuration. 

 

5.2. Dry Contact Transfer of Puckered-Sheet Graphite Fluoride 

Knowing the difficulties involved in mechanical exfoliation of monolayer 

graphene fluoride, we explore a technique made popular for the exfoliation of isolated 

single-walled carbon nanotubes
281,282

 and graphene.
283,284

  In dry contact transfer (DCT), 

a fiberglass applicator is impregnated with a dry source powder (e.g. nanotube bundles or 

HOPG graphite).  The applicator is loaded into a UHV system, degassed at appropriate 

temperatures, and mechanically stamped onto the target substrate.  This process leads to 

the deposition of small monolayer graphene flakes ~10 nm wide, or isolated nanotubes, 

onto the substrate.   In this case we follow closely the technique for monolayer graphene 

exfoliation, but impregnate the applicator with graphite fluoride powder.  Degassing is 

performed between 100 °C and 150 °C, well within the operating range of the material.  

Following DCT to Si(100) 2 × 1:H, a microscopic white powder is visible on the surface 

by optical microscopy, suggesting that large quantities of graphite fluoride have been 

transferred, including bulk material.  However, as we shall see, much of the surface 
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contains small monolayer flakes which can be identified by STM, with a flake density of 

approximately four flakes per 1 μm
2
.  Few-layer and multilayer flakes are not observed in 

this study, possible as a result of the weak interaction between planes in fluorinated 

graphite. 

 

5.3. Scanning Tunneling Microscopy: Monolayer Fluorinated Graphene 

Following DCT, a survey scan of the Si surface reveals a large number of 

2-D structures on the surface, which we identify as graphene fluoride.  One 

typical example is shown in Figure 5.3.  Figure 5.3a shows a false-color 3-D 

rendering of a flake, where Si is shown in red, and the CF flake is shown in green.  

The original 2-D topographic image is shown in Figure 5.3b. 

The fluorination of these flakes appears to be non-uniform, as indicated by 

graphitic regions visible within flakes.  For example, in Figure 5.4, the red arrow 

indicates an area with a topographic height of ~3 Å, typical of graphene and 

smaller than the 5 – 7.5 Å heights seen in CF flakes. 

Following the location and characterization of 12 monolayer CF flakes, 

we identify them in terms of average flake size and apparent topographic height.  

We expect the average flake size to be similar to that of DCT-transferred 

graphene, and the apparent topographic height to be similar to the interlayer 

spacing of bulk graphite fluoride. This hypothesis is verified by measuring flake 

heights by STM.  A scatterplot of all flake widths and heights is shown in Figure 

5.5.  The average flake width is 18.7 Å with a large standard deviation of 8.4 Å,  

and the average apparent flake height is 6.0 Å with a standard deviation of 1.1 Å.  
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If we exclude the two outliers with heights near 4 Å, this average apparent height 

goes to 6.4 Å with a standard deviation of 1.1 Å.  The interlayer spacing of bulk 

graphite fluoride is approximately 6.4 Å,
17

 which is in reasonable agreement with 

our measurements.  The high variance in flake height is important to note, and is 

explained in terms of a different substrate (Si instead of CF) and partial reduction 

of CF flakes.  Consequently, we explore the electron-stimulated reduction of 

graphene fluoride on Si(100). 

 

5.4. Electron-Stimulated Decomposition: Monolayer Fluorinated Graphene 

In order to better understand the influence of low-energy electron bombardment 

on monolayer CF flakes, we perform an extended batch mode scan of a single flake.  The 

flake is scanned repeatedly with a sample bias of −2 V and tunneling current of 8 pA.  

Following one hour of scanning, with a total electron dose of ~4000 C/cm
2
, the apparent 

topographic height of this flake has been reduced from 6.4 Å (σ
2
 = 0.48 Å) to 4.0 Å (σ

2
 = 

0.47 Å), declining at 0.0014 Å/(C/cm
2
) (R

2
 = 0.887).  A full data set showing flake height 

versus time is presented in Figure 5.6.  Black squares represent apparent flake height in 

each scan, with purple lines indicating the interlayer spacing of graphite and graphite 

fluoride.  Heights are measured by producing a histogram of the height of the flake and 

the height of the Si surface.  Both have approximately Gaussian distributions, and we 

take the height as the difference between the means.  The error bars are produced by 

combining the standard deviations of each histogram.  As a control, we also plot the 

apparent height of a Si dangling bond (red circles) from the same image set, allowing us 
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to verify that the observed change in flake height cannot be attributed to a change in the 

STM tip or the influence of the STM control system. 

This change in flake height explains the sizable variance in observed flake height 

during our initial survey scan, and can likely be attributed to partial defluorination during 

the scanning process.  To further verify and understand this mechanism, we explore the 

influence that this defluorination process has on the Si substrate. 

 

5.5. Defluorination and Silicon Substrate Etching 

We initially discovered accidentally that CF flakes are unstable on the Si 

surface.  In some cases, under normal scanning conditions (−2 V, 8 pA) flakes are 

removed spontaneously from the surface, leaving the Si substrate behind.  In other 

cases the flakes are cut or otherwise manipulated on the surface, revealing 

previously hidden Si atoms.  Our ability to manipulate flakes provides an 

opportunity to understand the influence of the flake on the Si substrate. 

Although we do not have reliable control over the relocation and removal 

of CF flakes, in some cases, we are able to take advantage of fortuitous 

circumstances to explore CF-substrate interaction.  In one case, shown in Figure 

5.7, a CF flake was scanned several times; in this process the flake was offset 

slightly by the STM tip to a location within the same scan area.  We then 

performed an extended batch mode over a period exceeding 45 minutes, during 

which the flake height changed as shown in Figure 5.6.  At the end of this time, 

the flake was removed from the system and could not be relocated.  It may have 

been transferred to the STM tip, as tip resolution also changed concurrent with the 
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transfer.  While the Si substrate was initially pristine, following CF transfer and 

scanning, a large number of monolayer vacancies appear in the Si substrate.  We 

believe that these defects are introduced by exposure to fluorine desorbed from 

the lower face of the CF flake.  The mechanism of fluorine etching of Si is well 

understood,
285–287

 and the energetically favorable transfer of F atoms from 

fluorocarbon nanostructures to Si(111) has been studied previously.
288

 

From this observation of F-induced Si etching and the observed reduction 

in CF flake height described previously, we conclude that defluorination of CF 

occurs under mild scanning conditions (−2 V, 8 pA).  We also note that flakes 

often rupture during scanning, which agrees with similar observations made 

during mechanical exfoliation. 

 

5.6. Discussion 

Mechanically exfoliated CF flakes are poorly suited to integration with electronic 

devices, in part because of their instability, propensity to rupture, and double-sided 

nature.  Because fluorine is trapped between the flake and substrate, fluorine-substrate 

chemical interaction is possible.  We also present the first demonstration of tip-induced 

defluorination of a fluorocarbon nanostructure, and specifically of monolayer graphene 

fluoride.  Given our ultimate goal of producing graphene structures in fluorinated 

graphene films, an improved understanding of this desorption mechanism is necessary.  

Ultimately, we wish to apply the knowledge gleaned from this study to single-sided 

structures from which fluorine can be desorbed with neither confinement beneath 

graphene nor deleterious effect on the chosen substrate. 
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It is also noteworthy that the DCT process is applicable to exfoliation of graphite 

fluoride, while traditional exfoliation cannot easily produce monolayer films.  The 

success of DCT is not just a testament to the universal applicability of DCT,  however; it 

also follows from the much smaller flake size observed in DCT-prepared samples.  

Indeed, the largest flake observed by exfoliation in other work is 1 μm,
25

 which is much 

larger that our samples but achieved much less consistently.  Ultimately, DCT is a 

technique applicable to surface science studies of exfoliated CF flakes on prepared 

conducting or semi-conducting surfaces.  Through an atomic-scale understanding of the 

interaction between CF and various substrates, scalable techniques for the production of 

fluorinated graphene may be discovered or enabled. 
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5.7. Figures 

 

Figure 5.1: TEM micrograph of CF flake on a Formvar grid.  The inset shows a 

diffraction pattern corresponding to this flake, with the expected sixfold symmetry typical 

of graphitic material.  The lattice constant cannot be conclusively determined because the 

diffraction system was not fully calibrated during this experiment.  
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Figure 5.2: XPS spectrum of the C1s peak of fluorinated graphite pressed into Au foil.  

The spectrum suggests a high degree of fluorination but additionally a high defect density 

and wide range of C-F bonding configuration, which is consistent with a low-quality 

sample.  
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Figure 5.3: Mechanical exfoliation of monolayer CF by dry-contact transfer and 

characterization by scanning tunneling microscopy (STM). (a) False color, three-

dimensional rendering of an exfoliated CF platelet.  Green areas represent the CF platelet, 

and red represents the underlying Si(100) surface. (b) A similarly exfoliated CF flake.    
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Figure 5.4: A third, larger, flake of CF, demonstrating non-uniformity of fluorination.  In 

this case, a small region of the flake is graphene-like with a topographic height of ~3 Å.  

The remainder of the flake is fluorinated to varying degrees.  Scale bar: 10 nm. 
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Figure 5.5: Scatter plot of the topographic height and maximum lateral dimension of all 

CF flakes characterized by STM.  Indicated in red is the interlayer spacing of CF
17

 for 

comparison.  All of the flakes observed were less than 40 nm in lateral extent.  The 

significant variation observed in topographic height is evidence of the observed non-

uniformity in source material fluorination, as well as electron-stimulated modification of 

the platelets. 
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Figure 5.6: Measured height variation of a single CF flake during scanning.  Sample bias 

is −3 V and tunneling current setpoint is 8 pA.  Flake height falls linearly under electron 

bombardment, until saturating at a topographic height of ~4 Å.  Also shown as a control 

is the observed height of silicon dangling bonds on the Si(100) 2 × 1:H surface, taken 

from the same STM images.  Unlike CF flakes, silicon dangling bonds show negligible 

variations in height throughout the course of the experiment. 
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Figure 5.7: Unlike graphene, CF is weakly adhered to the Si substrate.  As a result, it can 

be manipulated by the STM tip, including cutting, pushing, and removal from the surface.  

After manipulation or removal, fluorine etching of the first atomic layer of the silicon 

substrate is observed, offering further evidence for electron-stimulated defluorination of 

CF films.  Scale bars: 10 nm.  (a) CF flake on Si(100) 2 × 1:H.  This flake has undergone 

extensive scanning (dose: 4000 C/cm
2
) and the topographic height has been reduced to 

~4 Å.  (b) Height contour of flake, demonstrating flake height. (c) Identical silicon 

substrate after removal of CF flake by STM tip manipulation.  The silicon substrate is 

extensively pitted by fluorine etching.  (d) Height contour of the pitted silicon substrate. 
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CHAPTER 6 

ATOMIC AND ELECTRONIC STRUCTURE OF SINGLE-SIDED GRAPHENE 

FLUORIDE 

 

Fluorinated graphite is produced in puckered and planar forms, distinct in their 

synthesis and in-plane structure.  Fluorination by molecular fluorine between 200 °C and 

630 °C produces puckered-sheet graphite fluoride with a puckered sp
3
 graphitic backbone 

of the form CF or C2F.  In contrast, room temperature fluorination by atomic fluorine, 

often produced from XeF2, produces a more planar graphite intercalation compound CxF 

(x > 2) wherein the C4F in-plane structure is historically known
16

 and commonly 

encountered experimentally.
219

  Similar processing has now been applied to monolayer 

graphene.  Although large sheets of substrate-supported monolayer ds-GF are difficult to 

achieve,
17,27

 a form analogous to planar-sheet graphite fluoride can be synthesized by 

single-sided XeF2 exposure, leading to ss-GF which saturates as C4F.
247

 Given 

indications of C-F2 and C-F3 bonding
247

 and the predominance of variable-range hopping 

as an electron transport mechanism,
27

 the presence of long-range order in ss-GF remains 

a subject of dispute. Atomic-scale in-plane structure is of profound importance to the 

application and control of electronic and magnetic properties.  For example, atomically-

ordered C4F films have been suggested to serve as a barrier for quantum-confined 

nanoribbons,
14,249

 yet the edge structure of graphene nanoribbons plays an important role. 

Furthermore, numerous metastable configurations of fluorinated graphene are expected to 

possess novel carbon-based ferromagnetic or ferrimagnetic properties
289–291

 of interest for 

spin manipulation, but cannot yet be achieved experimentally, and depend heavily on the 

precise atomic ordering of adsorbed fluorine adatoms.
292

  In this study, by STM, STS, 

and XPS we explore for the first time the atomic-scale structural and electronic 
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characteristics of C4F ss-GF.  We produce the first atomically resolved images of 

monolayer fluorinated graphene, and find it to possess a wide electronic band gap and 

structural order on Cu(111) and Cu(311).  We further investigate the stability of ss-GF 

during thermal annealing in vacuum.  We find that the underlying Cu substrate exerts a 

pronounced influence on graphene fluoride, in contrast to CVD graphene films which 

span defects and topographic modulation on the polycrystalline Cu surface 

indiscriminately.
161

 

Monolayer ss-GF films are produced by a two-step growth and fluorination 

process.  We grow monolayer graphene by CVD on polycrystalline copper foil
158

 at 

1000 °C for 25 minutes (50 sccm H2, 850 sccm CH4). Following growth, the presence of 

graphene is confirmed by Raman spectroscopy and XPS.  Graphene is subsequently 

fluorinated by exposure to XeF2 gas at room temperature for 7 minutes in an XACTIX 

XeF2 etching system.
247

  The films are not removed from the Cu foil, thereby producing 

the cleanest possible interface and facilitating STM of the wide-gap fluorinated graphene 

film while minimizing band bending. 

 

6.1. X-ray Photoelectron Spectroscopy and Influence of Annealing 

In Figure 6.1, the composition of the resulting film is characterized by XPS, and 

the effect of thermal annealing explored. We extract by XPS a C/F ratio of 5.3.  This ratio 

is consistent with C4F, given that approximately 70% of the Cu surface is monolayer with 

a substantial bilayer component, typical for the growth conditions employed.   We 

identify the following chemical states
293

 for carbon atoms in our system: 71.7% C, 6.7% 

semi-ionic C-F, 7.3% covalent C-F, 4.5% C-F2, 9.4% C-F3.  The surface contains a 
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significant fraction of C-F2 and C-F3 bonding, more than could be explained by sparse 

point and line defects in CVD graphene.
161

  Graphene fluoride is degassed for 17 hours at 

120 °C in UHV below 1 × 10
-10

 torr, and then annealed for 10 minutes between 350 °C 

and 400 °C in UHV.  After imaging the sample by UHV-STM, we collect further XPS 

data (Figure 6.1c-d) to elucidate the influence of annealing.  We measure a C/F ratio of 

11.6.  Identification of the chemical state of carbon in our annealed system provides the 

following: 77.1% C, 5% semi-ionic C-F, 10.9% covalent C-F, 0.0% C-F2, 6.9% C-F3.  

We conclude that the UHV thermal reduction process primarily induces desorption of C-

F2 and C-F3 species, preserving C-F bonded carbon.  As we learn by STM, STS, and 

ARPES studies, this reduction is predominantly restricted to rough Cu surfaces, while 

long-range order and the wide band gap of C4F persists on well-ordered Cu(111) and 

Cu(311) facets. Both before and after annealing, the binding energy of the F 1s electron 

(calibrated to Cu 2p 3/2 at 932.6 eV) is 689.5 eV, substantially higher than in planar-

sheet graphene fluoride.
294

  This suggests a strong covalent bond and potentially non-

planar structure for ss-GF, and thus we do not adopt the “planar-sheet graphene fluoride” 

nomenclature. 

 

6.2. Scanning Tunneling Microscopy: Order in Graphene Fluoride 

Following anneal, the sample is transferred to a home-built UHV-STM operated 

at room temperature.
71

  Many facets of the polycrystalline copper surface exhibit 

substantial surface roughness yet are passivated by graphene and remain pristine 

following atmospheric exposure.  This surface passivation effect has been observed 

previously,
295

 and we verify the passivation of our sample by XPS spectra of the Cu 2p 
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doublet (Figure 6.2).  While it has been observed that some cold-rolled copper foils 

exhibit a predominant (100) surface orientation,
296

 EBSD data collected on our samples 

suggest a wide range of surface textures (Figure 6.3).  To overcome the inherent 

roughness of this surface, STM imaging is performed on (111) and (311) facets which are 

identified by low-resolution batch scanning over a 25 μm
2
 area.  Scanning is almost 

universally stable, although clear atomic-resolution imaging of C4F is achieved 

exclusively on atomically-flat Cu(111) (Figure 6.4).  Covalent fluorine adatoms appear as 

topographic protrusions in filled-states imaging under conditions selected to avoid the 

wide gap of the fluorinated graphene overlayer (−4 V sample bias, 10 pA tunneling 

current), so as to image C4F rather than the metal-insulator interface.  Topographic 

images of the system clearly indicate a hexagonal in-plane superlattice.  In this 

configuration, F atoms, confined to the top side of the graphene basal plane, are bonded 

in a super-cell with a lattice constant twice that of graphene (Figure 6.4a-b), disrupting 

transport and converting semi-metallic graphene into a wide gap semiconductor.  The ~4 

nm topographic modulations visible in Figure 6.4b constitute a Moiré superstructure 

which we will explore in greater detail.  Identical ordering of fluorine can be found on 

multiple Cu(111) facets, but cannot be directly observed on high-index Cu.  However, as 

we will see, Cu(311) exhibits a Moiré superstructure consistent with a C4F overlayer.  

STS shows a band gap on all studied facets, even high-index surfaces, although the band 

gap is reduced on high-index surfaces.  No other low-index Cu facets were studied, thus 

we cannot rule out the possibility of a similar result on the Cu(100) or Cu(110) surface.  

As a control, STM studies of pristine graphene on copper were performed and exhibit the 
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anticipated lattice structure, as shown on an identical scale in Figure 6.4c.  These images 

of graphene on copper are consistent with earlier studies of the material.
161

 

Furthermore, by STM we can verify the monolayer nature of our fluorinated 

graphene films and identify conclusively the underlying Cu substrate and its orientation 

relative to the ss-GF overlayer.  As a near-surface imaging technique, STM is capable of 

detecting the electronic influence of sub-surface atoms, in this case the Cu substrate.  

This electronic interaction produces Moiré superstructure arising from lattice 

misalignment between these two stacked, crystalline materials.  In cases where the Moiré 

pattern is hexagonal (Figure 6.5), we identify the underlying Cu substrate as Cu(111), the 

only hexagonal low-index surface of Cu thus capable of producing a hexagonal Moiré 

pattern with C4F.  In one instance, two orthogonal surfaces were visible and identifiable 

as Cu(111) and Cu(311) (Figure 6.6), and this identification allows the substrate 

orientation to be precisely defined.  To help rule out the possibility that the Moiré pattern 

could arise from turbostratically stacked bilayer graphene, we model the system from 

direct observation of the orientation of fluorinated graphene and Cu.  The predicted 

Moiré structures on both Cu(111) (Figure 6.6) and Cu(311) (Figure 6.7) agree with our 

experimental observations, and we thus conclude that the superstructure results from 

electronic interaction between C4F and Cu.  As we shall see, this interaction leads also to 

the visibility of the Cu(111) surface state. 

We also show in greater details the superstructure visible on Cu(311).  In Figure 

6.8, we show a topographic image of C4F on Cu(311) with a derivative inset in the upper 

left showing the transition into an adjacent Cu(111) facet where the C4F atomic structure 
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is visible.  Also shown are contour plots running across and along the “beans” of the 

Moiré superstructure. 

 

6.3. Scanning Tunneling Spectroscopy: Graphene Fluoride Band Structure 

Fluorinated graphene is currently of interest for its electronic properties, and for 

this reason we employ STS to extract the electronic band structure.  The predicted (>3 

eV) wide-gap electronic structure of fluorinated graphene is observed in all cases (Figure 

6.9).  Also observed is the presence of a gap state near the Fermi level, which we attribute 

to the Cu(111) Shockley surface state.  Focusing specifically on the well-characterized 

facets described in Section 6.2, we approximate the local density of states (LDOS) of C4F 

by normalized dI/dV calculated from variable-spacing STS (−2 Å).
297

   Our results are 

consistent with theoretical predictions and reproducible between data points and distant 

Cu facets. 

The electronic state visible near −0.6 eV is assigned to the Cu(111) surface state, 

while the state near 1.7 eV is the C4F conduction band edge.
298

  The observed valence 

band edge of C4F is near the Cu d-band state, thus requiring further study to distinguish 

the two.  Comparing STS on Cu(111) and Cu(311) (Figure 6.10) we find C4F on Cu(311) 

to be p-doped, an unexpected result that may follow from interaction between ss-GF and 

periodic charge modulation on the Cu(311) surface.
161

  Visibility of the Cu surface state 

is reasonable given the use of variable-spacing STS, whereby the tip is moved 

progressively nearer the sample as sample bias approaches zero (−2 Å at the Fermi level).  

As a result, tip-sample spacing is reduced near the Fermi level and the Cu(111) surface 

state is discernible.  We also note that the surface state persists on Cu(311), but is shifted 
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nearer to the Fermi level, as expected.
299

  An observation that cannot yet be explained is 

the apparent increase in band gap on Cu(311) relative to Cu(111).  The band gap of C4F 

on Cu(111) is measured to be 3.4 eV, but on Cu(311) this gap increases to 3.7 eV, an 

unexpected result and the subject of future study. 

Additional data is collected on high-index Cu surfaces, on which the surface 

orientation can be identified (relative to nearby Cu(111)) but atomic resolution of 

fluorinated graphene is not achieved.  In these cases, a wide band gap is seen, and, as 

expected, the Cu(111) surface state is not seen (Figure 6.11).  This indicates that 

fluorinated graphene spans these regions, but spectroscopic variability of these facets 

suggests that the surface is partially reduced by annealing, consistent with XPS.  This 

variability is believed to follow from variations in fluorine ordering and concentration 

and suggests that the substrate plays an important role in the fluorination and reduction of 

graphene, due either to roughness or superlattice periodicity, as seen in the hydrogenation 

of graphene on iridium.
244

 

As our C4F sample does not contain any known materials on which our STM tip 

can be calibrated, we employ the Si(100) 2 × 1:H surface.  Immediately following our 

STS study, the C4F sample is removed, and a previously prepared Si sample is loaded 

into the STM.  Dimer-resolution imaging of Si(100) 2 × 1 is immediately achieved, and 

STS data collected (Figure 6.12).  An accurate Si band structure is observed, in particular 

a 1.1 eV band gap, thus indicating the density of states of our STM tip has not 

significantly convolved the density of states of C4F. 

We note that the orientation of C4F is identical between distant Cu facets on the 

same graphene and Cu grains, but this does not necessarily indicate that the initial C4F 
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film was ordered between these islands, rather that the islands fall upon a single graphene 

grain.  This identical orientation occurs because, for a single graphene domain, there exist 

no rotationally distinct configurations of C4F.  While three rotationally equivalent 

domains exist (Figure 6.13), roughness and lack of atomic resolution on high-index Cu 

surfaces makes it impossible to identify any such domain boundaries between low-index 

facets. 

 

6.4. Discussion 

In this first atomically resolved study of graphene fluoride, and in 

particular of ss-GF, we have verified the predicted atomic structure of this novel 

material, identified specifically the relative orientation of the Cu substrate and 

C4F overlayer, and explored the local density of states of this material.  Given our 

identification of the Cu substrate orientation, we are able to explore the influence 

of various Cu substrates on our fluorinated graphene films.  Finally, we verify the 

expected wide-gap electronic structure of ss-GF, as well as the presence of long-

range order within these films. 

The C4F form of ss-GF is a hexagonal fluorine superlattice with a lattice 

constant twice that of graphene.  On the Cu(111) and Cu(311) substrates, these 

structures appear consistently, and are well ordered within Cu surface facets. On 

high-index surfaces of Cu we do not achieve atomic resolution imaging of C4F, 

but an electronic band gap is preserved.  The preservation of a band gap suggests 

that fluorination persists, albeit with a variable fluorine concentration. 
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C4F ss-GF is a wide-gap semiconductor, with a gap larger than 3 eV.  On 

Cu(111) and Cu(311) this band gap is reproducible, but films on rough Cu 

surfaces are partially reduced during annealing. 

 

6.5.  Figures 

 

Figure 6.1: X-ray photoelectron spectra of monolayer graphene fluoride following 

growth, and then following annealing and STM analysis.  Plots presented following 

background subtraction.  (a) C 1s peak of graphene fluoride following growth and before 

annealing, with peaks identified].  (b) F 1s peak of graphene fluoride following growth. 

(c) C 1s peak of graphene fluoride after annealing and STM, with peaks identified. (d) F 

1s peak of graphene fluoride following annealing. 
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Figure 6.2: High-resolution XPS data of Cu 2p doublet used for calibration and 

verification of substrate passivation by graphene.  In order to calibrate the positions of 

our C 1s and F 1s peaks, we shift to align the 2p doublet of the nominally pure Cu with 

its predicted binding energy (Cu 2p 3/2 peak at 932.6 eV).  Furthermore, from the Cu 2p 

doublet we confirm the absence of any significant oxidation or fluorination on the Cu 

surface both before and after fluorination. The absence of oxidation indicates that the 

graphene passivation layer remains predominantly continuous during fluorination and 

annealing, despite evidence for partial reduction of C4F. 
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Figure 6.3: During annealing, cold-rolled polycrystalline Cu foils can produce 

crystallographically preferred surface orientations, often Cu(100) or Cu(111), but in our 

case the substrate is found predominantly to preserve its highly polycrystalline nature.  

Using EBSPs collected after the conclusion of the high-temperature graphene CVD 

process, we verify that the foils used in this experiment contain a wide range of surface 

orientations, including Cu(100), Cu(111), Cu(110), and a variety of high-index grains. 
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Figure 6.4: Atomic-resolution scanning tunneling microscopy of C4F on Cu(111).  All 

images on identical scale.  Scale bars: 1 nm. (a) Schematic representation of C4F oriented 

to the topograph in (b).  (b) Topographic image of C4F on Cu.  Fluorine atoms appear as 

topographic protrusions. Topographic modulations of ~4 nm are elements of a Moiré 

superstructure.  Scanning conditions: −4 V sample bias, 10 pA tunneling current.  (c) 

Spatial derivative of monolayer graphene on Cu from non-fluorinated control experiment.  

Scanning conditions: −70 mV sample bias, 5 nA tunneling current. 
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Figure 6.5: (a) Cu(111) facets can be identified by a Moiré pattern arising from the 

interaction between C4F and the underlying Cu(111).  The presence of this hexagonal 

pattern uniquely identifies the Cu(111) surface. Scale bar: 5 nm.  (b) The orientation of 

the Cu(111) substrate can be identified by comparison with a theoretical model.  This 

agreement with experiment not only provides the substrate orientation, but also further 

validation of our C4F film structure. Scale bar: 5 nm.    
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Figure 6.6: (a) 1-D contour plot corresponding to the red line in Figure 6.6b.  From the 

known orientation of the Cu(111) facet, and the measured 150° (30°) angle between 

facets, we identify the lower facet as Cu(311). (b) Topographic image of Cu(111) and 

Cu(311) facets within a single grain of polycrystalline Cu.  The red line corresponds to 

the contour plot of Figure 6.6a.  Scale bar: 20 nm. 
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Figure 6.7:  (a) Having determined the orientation of the Cu substrate, it is now possible 

to identify other surfaces, specifically Cu(311) which can be seen in topographic images 

of the substrate.  (b) Moiré pattern model for C4F on Cu(311) in agreement with 

experimental observations.  
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Figure 6.8: Contour plots of the superstructure visible for C4F on Cu (311).  (a) 

Topographic image of the surface, where Cu(311) abuts Cu(111) (shown in the derivative 

inset in the upper left corner).  (b) Contours below correspond to the red and blue lines in 

(a). 
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Figure 6.9: Typical local DOS measured on Cu(111) identifying the band gap of C4F 

(Eg), the Cu(111) surface state near −0.6 eV, and the conduction and valence band edges. 
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Figure 6.10: Normalized dI/dV spectroscopic data for C4F graphene fluoride on two 

independent Cu(111) facets in red and two independent Cu(311) facets in blue.   
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Figure 6.11: Variable spacing IV spectroscopic data from various rough Cu surfaces.  A 

wide band gap of graphene fluoride persists, but as expected the Shockley surface state is 

not visible.  The band gap is smaller and more variable than on Cu(111) or Cu(311) and a 

state near 2.5 eV appears inconsistently.    
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Figure 6.12: Variable spacing IV spectroscopic data from the Si(100) 2 × 1:H surface 

using the same tip immediately following the spectroscopy study of C4F. 
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Figure 6.13: While domains in polycrystalline graphene can contain an infinite range of 

misorientation angles, the fluorination process itself is bound precisely to the orientation 

of the graphene template.  Within a single grain of graphene, no rotationally misoriented 

domains of fluorine can exist, so long as the C4F structure is preserved.  However, there 

exist several possible fluorine domains that may arise during the agglomeration of 

expanding clusters.  Two such examples of fluorine grain boundaries are shown, though 

none are observed experimentally in this study.  These diagrams seek to express possible 

domain orientations, not to strictly demonstrate the preferred atomic configuration of 

domain boundaries. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

7.1 Dissertation Summary 

This dissertation has explored the process of FDSS, and the nature of single-sided 

and double-sided forms of fluorinated graphene.  We have shown that FDSS produces 

ultra-sharp metallic tips, that these tips perform significantly better than those prepared 

by CSE or ECE as electron-sources for ESD of H in the STM, and that the FDSS 

technique is applicable to HfB2.  We have shown that ds-GF can be exfoliated by DCT, 

and that the resulting films are unstable under electron bombardment.  In contrast, we 

have shown that ss-GF (C4F) can be produced on Cu, and that these films are well 

ordered, wide gapped, and stable. 

In Chapter 2 we explored FDSS and, by means of TEM, characterized tips 

composed of W and Pt-Ir.  We demonstrated the sharpest sputter sharpened tip yet 

produced, and demonstrated that this process was consistent across multiple materials.  

We explained the influence of off-axis FDSS, and demonstrated the sharpening of DLC 

films by FDSS, a process that is less effective due to the film’s high resistivity. 

In Chapter 3 we applied FDSS to a more conductive ultra-hard material, HfB2.  

We demonstrated that the sharpening process is effective, and that it affords significant 

benefits over CSE.  We demonstrated the use of HfB2 as an STM tip material, and 

verified that it is capable of high-resolution imaging and patterning, as well as stable 

spectroscopy.  

In Chapter 4, we approached the limits of atomically-precise lithography of the 

Si(100) 2 ×1:H surface.  Using ultra-sharp FDSS tips, we demonstrated smaller 
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lithographic pattern widths that ultimately approach reliable atomic-fidelity.  We also 

demonstrated regeneration of tips for ongoing atomic-resolution lithography using FDSS. 

Employing the STM and FDSS-processed tips, in Chapter 5 we demonstrated the 

mechanical exfoliation of puckered-sheet graphene fluoride to the Si(100) 2 × 1:H 

surface and, consistent with earlier work on fluorocarbon nanostructures, discovered 

instability inherent to the system which prevents the stable integration of these materials.  

We demonstrated the tip-induced defluorination of ds-GF, and the ability of the STM to 

manipulate and remove graphene fluoride flakes from the substrate.  We also 

demonstrated fluorine etching of the silicon substrate as evidence of defluorination and as 

a possible avenue for further study of fluorine-silicon interaction. 

 Shifting to a planar-sheet form of graphene fluoride, in Chapter 6 we demonstrated 

the presence and stability of long-range ordering in C4F graphene fluoride on 

polycrystalline copper foil.  We found that ordered films of C4F are formed by XeF2 

treatment followed by UHV anneal between 350 °C and 400 °C, and that C4F films are 

comprised predominantly of covalently bonded fluorine with some evidence of semi-

ionically bound fluorine and more highly fluorinated carbon structures, likely at grain 

boundaries and defects.  We have measured the density of states of C4F on copper and 

found exceptional agreement with theoretical predictions of a wide band gap with a gap 

state corresponding to the Cu(111) Shockley surface state near the Fermi level. 

 In conclusion we developed a novel tip sharpening technique which provides the first 

parallelizable and material independent process for producing sharp metal probes with 

1 – 5 nm radii.  We have further studied two common forms of graphene fluoride, 

discovered a non-negligible interaction between ds-GF and the substrate, and 
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subsequently verified the stability of single-sided planar-sheet graphene fluoride on 

copper.  We have resolved uncertainty surrounding the presence of long-range order and 

a stable band structure in planar-sheet graphene fluoride synthesized by XeF2 treatment, 

and pioneered a project for further studies of graphene fluoride and reduced graphene 

fluoride by STM. 

 

7.2 Future Work 

This dissertation represents some of the earliest studies of fluorinated graphene 

films, and provides an introduction to an extensive program of research, only the earliest 

stages of which have been realized.  Given the ability to produce and characterize 

fluorinated, and, more generally, chemically modified, graphene with atomic resolution, 

countless experimental studies are now made possible. 

For example, as discussed in Chapter 1, numerous techniques are available for the 

reduction of fluorinated graphene, each with their own advantages and disadvantages, 

and none yet understood.  Knowing that C4F is predominantly defect-free, the techniques 

and results of this study offer a powerful tool for the characterization of each reduction 

technique, a study that could ultimately optimize the patterning of chemically modified 

graphene. 

Perhaps more directly, the STM offers the potential for ESD of F from C4F.  

Future work will explore such direct desorption, as an approach to demonstrating 

quantum-confined graphene structures in fluorinated graphene films. 

Furthermore, there has been much interest in the exploration of the magnetic 

properties of fluorinated graphene films.  Because defects (including F atoms) on each 
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sublattice introduce a specific magnetic polarization to the system,
290,291,300

 by confining 

F atoms to a single sublattice, a ferromagnetic carbon material could be produced.  It is 

not clear that such a structure exists,
292

 but it remains an elusive goal for many 

researchers. The work of this dissertation, particularly in the study of partially reduced 

graphene fluoride on high-index surfaces, offers some insights and opportunities here.  

One approach to achieving such ferromagnetic structures may be the use of graphene-

substrate interactions to tailor F or H adsorption sites, as in the work of Ng et al.
241

 

Our studies of FDSS immediately offer the potential for applications in 

fabrication of AFM probes and field-emitter arrays.  The up-scaling of this technique to a 

massively parallelizable system (for example, by a raster-scanned ion gun or plasma 

etching system) would offer the potential for scaling to commercially viable quantities.  

Furthermore, since the range of novel tip materials is nearly limitless, future work should 

explore such applications. 

Ultimately, the work of this dissertation frames two fields of research, field-

directed sputter sharpening and fluorinated graphene, each of which will continue to 

grow and thrive long into the future. 
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APPENDIX A 

FLOW-THROUGH COOLING FOR UHV DIPSTICK 

 

 

We present the design of a flow-through cooling system for a preparation 

chamber “dipstick” in the “Chamber A” UHV system located in the Lyding STM 

Laboratory at the Beckman Institute.  Presented is the design of the original dipstick as 

well as proposed modifications under construction at the time of writing.  The modified 

dipstick design with flow-through cooling was designed jointly by the author, Professor 

Joseph Lyding, and Scott McDonald of the ECE department machine shop.  Original 

dipstick designs are shown with a gray background, and the new flow-through cooling 

dipstick design is shown with a black background. 

We first present an earlier dipstick design employed on most Lyding lab UHV-

STM systems prior to 2012.  The purpose of the dipstick is fourfold: in situ positioning 

and rotation, heating, cooling, and temperature measurement. 

The dipstick is designed to interface with a variety of assemblies, including but 

not limited to sample holders, tip heaters, and molecular dosers.  All of these assemblies 

will be generically referred to as “holders.” In all cases, the interface between dipstick 

and holder provides for two electrically isolated sides separated by an insulating center-

piece.  While the holder is held from above, it is fixed in place vertically by spring-steel 

clips and quartz rollers which interface with depressions in the side of each holder.  

Lateral stability is provided by two pins which protrude into the insulating center-piece of 

the holder. 

Positioning of the holder in three dimensions is enabled by the use of an xyz stage 

and welded bellows.  Rotational manipulation is enabled by a differentially pumped 
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rotational stage.  The use of differential pumping to enable rotation (with gasket seals and 

three vacuum stages: UHV, turbo pump, roughing pump) is not ideal, but is necessitated 

in the current design by the need to rotate both electrical feedthroughs and, more 

importantly, gas feedthroughs employed for sample cooling.  These feedthroughs cannot 

be rotated without implementing a poorly sealed rotating vacuum feedthrough.  A 

diagram of this rotational system with feedthroughs is found in Figure A.1.  Alternate 

designs have variously employed a cooling plate design to replace the dipstick cooling 

assembly
301,302

 and a stage design where the entire dipstick assembly is replaced by 

various fixed stages on which holders are positioned by use of a “wobble stick” vacuum 

manipulator. 

Two heating mechanisms are provided, including filament heating and resistive 

sample heating.  In the former case, heating is through a tungsten filament affixed to the 

side of the dipstick stack.  The filament is generally enshrouded in a metal foil housing 

which optimizes thermal transfer.  Filament heating is employed to heat the entire 

dipstick and mounted holder to a temperature typically below 150 °C and in all cases 

below 200 °C.  While filament heating is sufficient to remove water from inert samples, 

frequently higher temperature processing is required for sample preparation or tip 

degassing.  For example, Si(100) samples are prepared by flashing briefly to 1200 °C, 

and STM tips are typically degassed above 600 °C before use.  In these cases, samples 

are heated by independently biasing both sides of the dipstick, allowing current to flow 

through the holder directly.  For fairly resistive samples, including Si, high temperatures 

(1200 °C) are easily achieved, although care should be taken to avoid thermal runaway 

when heating lightly doped semiconductors.  For highly electrically and thermally 
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conductive samples, such as Cu foil, extremely high currents would be necessary to 

achieve high temperatures, and in these cases a more resistive film (typically Si) is 

mounted behind an insulating film as a resistive heating element while the conductor is 

electrically contacted only on one side for sample biasing in the STM.  Resistive sample 

heating allows for high processing temperatures without imparting extreme thermal 

stresses on the dipstick.  The dipstick can also be simultaneously cooled to limit dipstick 

temperature. 

Dipstick and holder cooling is enabled by the flow of a cooling gas or liquid 

through the dipstick during processing.  Two sealed steel tubes extend from the top of the 

dipstick down to its head.  The tubes are sealed, but cooling is enabled by pressing a 

second inner tube down into the outer tube (Figure A.2).  Care must be taken to 

electrically isolate the inner tube from the outer tube where it exits the chamber, because 

the inner tube will be in electrical contact with the biased head of the dipstick.  Gas 

(typically N2) or cryogenic liquid (LN2 is not recommended due to thermal stressing of 

silver braze joints between the steel tubes and Cu dipstick head) is passed in the inner 

tube and then out the outer tube to provide a rudimentary flow-through cooling system. 

Temperature measurement is provided by two thermocouple feedthroughs.  One 

thermocouple is affixed to the Cu dipstick head (it is spot welded to a foil clip which is 

then bolted to the dipstick).  This thermocouple provides measurement of the dipstick 

temperature during processing.  A second thermocouple feedthrough is attached to the 

aforementioned pins which prevent lateral movement of the holder on the dipstick.  In 

this way, a thermocouple can be mounted on each holder and interfaced with the dipstick 

thermocouple feedthroughs for in situ sample temperature measurement.  Thermocouples 
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are typically Type K (alumel and chromel) or Type C (tungsten-rhenium) depending on 

system design and application. 

In order to electrically isolate each side of the dipstick from the chamber ground, 

alumina isolators from Ceramtec (for example, model #8002-01-W) are welded into the 

steel tubing (Figure A.3).  The precise model employed in the original dipstick is 

unknown, but the new design employs cryogenic isolators with an operating temperature 

ranging from −269 °C to 450 °C, compatible with all low-temperature and high-

temperature dipstick processing employed in the Lyding STM Lab.  Cu wires sheathed in 

fiberglass are then clamped to each cooling tube below the isolator and connected to a 

high-current electrical feedthrough.  To prevent overheating and warping of the dipstick 

during high current, high-temperature processing, braided copper wire is run along the 

length of the stainless steeling tubing to improve thermal and electrical conductivity 

(Figure A.4). 

At the bottom of the dipstick (Figure A.5), both stainless steel cooling tubes are 

brazed to copper blocks with a silver-based solder.  These Cu blocks are similarly brazed 

to Cu tubes which pass to the dipstick head itself, where they are brazed.  Hollows for 

gas-flow pass through these junctions into the dipstick head, where they terminate.  Due 

to the geometry of the dipstick head, the inner cooling tube cannot pass beyond the upper 

Cu block, and therefore gas beneath this level is not forced but moved only by 

convection, reducing cooling efficiency.  The six braze joints and the approximate 

locations of the inner cooling tubes are indicated in Figure A.6. 

The original dipstick of the Chamber A STM system failed between 2010 and 

2011.  The mode of failure was the formation of a microfracture in one of the braze joints 
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at the dipstick head.  The time and expense required to repair this damage would equal or 

exceed the cost of building a new dipstick, due in part to the unknown composition of the 

existing silver solder and therefore the need to fully remove this material before inserting 

a new braze joint.  As a result, we took  this opportunity to design a modified dipstick 

which allowed flow-through cooling directly to the base of the dipstick, and 

simultaneously reduced the number of braze joints, which had proven to be a likely point 

of failure. 

The modified dipstick design includes four stainless steel tubes which pass 

through the outer shell of the UHV chamber, through four staggered ceramic isolators, 

and down to the head of the dipstick, incorporating a similar electrical contact and 

braided copper wire for thermal and electrical conductivity.  This modified design is 

shown in Figure A.7. 

Electrically, each side of the dipstick includes two ¼ inch stainless steel tubes 

which are wired in parallel to increase conductivity and minimize the effect of thermally 

induced warping.  A close-up view of the wiring mechanism and copper braid is shown in 

Figure A.8. 

At the bottom of the modified dipstick, each stainless steel cooling tube is brazed 

directly to the dipstick head (Figure A.9), reducing the total number of joints from six to 

four.  The geometry of the head is modified, while maintaining the necessary dimensions 

to fit within the translational and rotational manipulation assemblies.  The interface 

between dipstick and sample holder remains unchanged, to maintain compatibility with 

all existing holders and processes. 
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Flow-through cooling is implemented by joining the cooling tubes within the 

copper block of the dipstick head, as shown in Figure A.10.  This modification enables 

gas flow through the dipstick head, increasing cooling efficiency and eliminating the 

need for inner cooling tubes. 
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Figure A. 1 
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Figure A. 2 
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Figure A. 3 
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Figure A. 4 
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Figure A. 5 
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Figure A. 6 
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Figure A. 7 
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Figure A. 8 
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Figure A. 9 
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Figure A. 10 
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APPENDIX B 

LYDING TO GWYDDION FILE CONVERSION SOFTWARE 

 

The STM control software employed in the Lyding STM Lab at the University of 

Illinois was written by Joseph Lyding and Roger Brockenbrough, and has been updated 

repeatedly through its developmental history.  The software outputs STM data in a file 

format specific to the Lyding STM program which incorporates topographic buffers, 

spectroscopic buffers, and lithographic parameters into a single data file.  Each version of 

the Lyding STM software is backwards compatible with prior versions of the data file 

format.  No complete documentation exists describing the file format. 

Gwyddion is a freely available, open source, modular software package 

distributed under the GNU general public license.  It is used for the analysis of scanned 

probe microscopy data sets, including topographic buffers and spectroscopic buffers.  Its 

modular and extensible structure further enables the incorporation of additional data 

types such as lithographic writing parameters.  Gwyddion is a popular tool in the SPM 

community, and continues to undergo development.  In order to employ Gwyddion for 

the analysis of Lyding STM data files, it became necessary to implement conversion 

software to take the originally formatted Lyding STM data into a Gwyddion-compatible 

format.  A first release of this conversion software is available, with the following 

features and limitations: 
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- Parses Lyding STM data files (Version 4.0) to extract the following 

information: 

o Image buffers (topograph, current, dig. topograph, lock-in, error, 

d
2
I/dV

2
) 

o Spectroscopy data and relevant parameters 

o CITS spectra and image buffers 

o Scanning variables and details of the electronic configuration 

o Textual scan log input by the user 

- Creates a Gwyddion-formatted output file (.gwy) containing the following 

information: 

o Image buffers (topography, current, dig. topograph, lock-in, error, 

d
2
I/dV

2
) 

- Limitation: 

o Can not parse data files containing embedded lithography parameters.  

Such data files must be resaved with lithography data excluded. 

 

What follows is C++ code for a portion of the conversion software.  Specifically, I have 

included the code for the stmfile class which handles the parsing of Lyding STM data. 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
 
using namespace std; 
 
int parsestring(FILE *out, char *outchar, char *name, int length, int errorcode); 
int parsekeyword(FILE *out, char *keyword, int errorcode); 
int parseshort(FILE *out, short *siout, char *name, int errorcode); 
int parseint(FILE *out, int *iout, char *name, int errorcode); 
int parsefloat(FILE *out, float *floatout, char *name, int errorcode); 
FILE *fp; 
 
struct globalvars_type { 
 char rev_lab[40]; // File type revision label 
 char samp_lab[80]; 
 short year; // Year that data file was collected 
 short month; // Month that data file was collected 
 short day; // Day that data file was collected 
 short hour; // Hour that data file was collected 
 short minute; // Minute that data file was collected 
 short second; // Second that data file was collected 
 char stm_revision_label[40]; 
 char stm_id[16]; 
 char stm_electronics[16]; 
 short stm_revision_year; 
 short stm_revision_month; 
 short stm_revision_day; 
 short stm_revision_hour; 
 short stm_revision_minute; 
 short usedsp; 
 short usekeithley; 
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 float iscan; 
 float vscan; 
 float tsamp; 
 short bias_to_probe; 
 short atodsign; 
 float dsp_atod_max_v; 
 float dsp_dtoa_max_v; 
 short dtoa_max_value; 
 
 // Gain factors and amplifier (lin/log) 
 float cur_gain; 
 float hv_gain; 
 float amplif; 
 
 // A/D Converter Variables 
 float top_ad_ver; 
 float top_ad_max_gain; 
 float top_ad_gain; 
 float cur_ad_ver; 
 float cur_ad_gain; 
 float err_ad_ver; 
 float err_ad_gain; 
 float lock_ad_ver; 
 float lock_ad_gain; 
 
 // STM Electronics Variables 
 float prop_gain; 
 float intg_gain; 
 float der_gain; 
 float atod1_gain; 
 float atod2_gain; 
 short atod1_chanl; 
 short atod2_chanl; 
 
 globalvars_type() 
 { 
  atodsign = 0; 
  dsp_atod_max_v = 2.75; 
  dsp_dtoa_max_v = 3.0; 
 } 
}; 
 
struct messagebox_type { 
 short num_message_lines; 
 char **message_lines; 
 
 messagebox_type() 
 { 
  num_message_lines = 0; 
  message_lines = NULL; 
 } 
}; 
 
struct heatvars_type { 
 char heat_cal_data_filename[60]; // Calibration file 
 char heat_cal_data_label[60]; // Calibration data label 
 short heat_cal_num_points; // Number of points in heater calibration data 
set 
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 float *heat_cal_current; // Current array (size = heat_cal_num_points) 
 float *heat_cal_temperature; // Temperature array (size = 
heat_cal_num_points) 
 float heat_cal_slope; 
 float heat_cal_intercept; 
 float heat_cal_correlation; 
 short heat_cal_valid_regression; 
 
 heatvars_type() 
 { 
  heat_cal_num_points = 0; 
  heat_cal_current = NULL; 
  heat_cal_temperature = NULL; 
 } 
}; 
 
struct stsblock_type { 
 short spec_block_data_type; 
 char spec_block_label[80]; 
 short spec_mode; 
 short max_spec_per_coord; 
 short spec_num_spec; 
 short spec_pt_per_spec; 
 short spec_avg_num_spec; 
 short spec_hex_num_spec; 
 short spec_x_num_spec; 
 short spec_y_num_spec; 
 short spec_u_num_spec; 
 float spec_spread_type; 
 short spec_lead_pts; 
 float spec_settle; 
 float spec_vstrt; 
 float spec_vfnsh; 
 float spec_istrt; 
 float spec_ifnsh; 
 float spec_pt_del; 
 float spec_zstrt; 
 float spec_zfnsh; 
 float spec_zscan; 
 float spec_avg_del; 
 float spec_x_spec_inc; 
 float spec_y_spec_inc; 
 float spec_r_x_cen; 
 float spec_r_y_cen; 
 float spec_rect_angl; 
 float spec_u_x_cen; 
 float spec_u_y_cen; 
 float spec_user_angl; 
 float spec_hex_pt_sep; 
 float spec_h_x_cen; 
 float spec_h_y_cen; 
 float spec_hex_angl; 
 short spec_lock_in_der; 
 float spec_lock_in_range; 
 float spec_lock_in_tau; 
 float spec_dith_ampl; 
 float spec_dith_freq; 
 short spec_cusp_index; 
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 float spec_lock_in_point_delay; 
 float spec_lock_in_full_scale_v; 
 short spec_skip_endpoint_ramps; 
 short spec_pt_num_average; 
 float spec_pt_avg_delay; 
 short spec_potentiometry; 
 short spec_potentio_use_samp_intv; 
 float spec_potentio_samp_interval; 
 float spec_potentio_lower_rail_v; 
 float spec_potentio_upper_rail_v; 
 short spec_potentio_lower_rail_fixed; 
 short spec_potentio_upper_rail_fixed; 
 short spec_initial_v_use_scan_value; 
 short spec_initial_i_use_scan_value; 
 short spec_initial_trans_together; 
 short spec_initial_trans_i_first; 
 float spec_initial_v; 
 float spec_initial_v_trans_time; 
 float spec_initial_i; 
 float spec_initial_i_trans_time; 
 float spec_cusp_voltage; 
 float spec_delay_before_atod; 
 short spec_set_initial_ds; 
 float spec_initial_ds; 
 float spec_initial_ds_trans_time; 
 short spec_current_channel_0_on; 
 short spec_current_channel_1_on; 
 short spec_current_channel_2_on; 
 short spec_current_channel_3_on; 
 short spec_current_average_mode; 
 short spec_dither_only; 
 short spec_leave_dither_on; 
 
 // Coordinates 
 short *cols;  // Size = spec_num_spec 
 short *rows;  // Size = spec_num_spec 
 
 float ***stsdata; // Array of array of floats (array of floats for each 
spectra) 
 
 stsblock_type() 
 { 
  cols = NULL; 
  rows = NULL; 
  stsdata = NULL; 
 } 
}; 
 
struct stsvars_type { 
 short valid_spec; 
 short spec_num_blocks; 
 short spec_mode; 
 float spec_array_offset; 
 short spec_max_points_per_spec; 
 short spec_max_spec_per_coord; 
 short spec_max_num_spec; 
 short spec_active_block; 
 stsblock_type *stsblocks;  // size = spec_num_blocks  



175 

 

 
 stsvars_type() 
 { 
  valid_spec = 0; 
  spec_num_blocks = 0; 
  stsblocks = NULL; 
 } 
}; 
 
struct citsbuff_type { 
 float cits_bias; 
}; 
 
struct citsblock_type { 
 short cits_block_mode; 
 short cits_block_data_type; 
 char cits_block_text[80]; 
 short cits_spec_raw_deglitch; 
 short cits_spec_raw_glitch_threshold; 
 short cits_spec_raw_smooth; 
 short cits_spec_raw_smooth_order; 
 short cits_spec_raw_smooth_n_fit; 
 
 float **realdata;   // holds data array if data type = 1, 
else null 
 short **intdata;   // holds data array if data type = 0, 
else null 
 
 citsblock_type() 
 { 
  realdata = NULL; 
  intdata = NULL; 
 } 
}; 
 
struct citsvars_type { 
 short cits_on; 
 short valid_cits; 
 
 short spec_mode; 
 short cits_num_buff; 
 short cits_num_blocks; 
 short cits_analysis_block; 
 short cits_display_block; 
 short cits_oversample_mult; 
 float spec_vstrt; 
 float spec_vfnsh; 
 float spec_pt_del; 
 short spec_avg_num_spec; 
 float spec_avg_del; 
 float spec_lock_in_point_delay; 
 short cits_log_temperature; 
 short cits_temperature_pts; 
 short cits_temperature_atod_channel; 
 float cits_temperature_log_interval; 
 float cits_temperature_log_sampl_dt; 
 float cits_temperature_conv_factor; 
 short spec_dither_only; 
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 short cits_topo_average; 
 short cits_topo_num_average; 
 short cits_spec_fit; 
 short cits_spec_fit_pts; 
 float spec_istrt; 
 float spec_ifnsh; 
 float spec_zstrt; 
 float spec_zfnsh; 
 float spec_zscan; 
 
 char *cits_temperature_array;  // length = 4 * 
cits_temperature_pts 
 citsbuff_type *citsbuffs;  // size = cits_num_buff 
 citsblock_type *citsblocks;  // size = cits_num_blocks 
 
 citsvars_type() 
 { 
  cits_on = 0; 
  valid_cits = 0; 
  cits_num_buff = 0; 
  cits_num_blocks = 0; 
  cits_temperature_pts = 0; 
  cits_temperature_array = NULL; 
  citsbuffs = NULL; 
  citsblocks = NULL; 
 } 
}; 
 
struct colormap_type { 
 float h_min; 
 float h_max; 
 float s_min; 
 float s_max; 
 float i_min; 
 float i_max; 
 short n_min; 
 short n_max; 
 short d_min; 
 short d_max; 
 float dp_min; 
 float dp_max; 
 short dpr_min; 
 short dpr_max; 
 short col_fit_type; 
}; 
 
struct colormap_arr_type { 
 short num_colormaps; // Min(NUM_BUFFERS,NUM_MAPS) 
 colormap_type *maps;  // Array of color maps (size = num_colormaps) 
 
 colormap_arr_type() 
 { 
  num_colormaps = 0; 
  maps = NULL; 
 } 
}; 
 
struct scanvars_type { 
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 short scan_mode; 
 float xst; 
 float xfin; 
 float xinc; 
 float x_ofset; 
 float yst; 
 float yfin; 
 float yinc; 
 float y_ofset; 
 float scnxin; 
 float scnyin; 
 float theta; 
 float scan_del; 
 short scan_ad_check; 
 short scan_up_dwn; 
 short scanning_up; 
 short nsampl; 
 short nscans; 
 short xnum; 
 short ynum; 
 float jj_z_gain; // Jim Janninck Z Gain? Constant 3.35 
 
 // Variable speed scanning parameters 
 float topo_ad_delay; 
 short ad_max_change; 
 short max_num_ad_check; 
 
 // Sub-interval scanning variables 
 short use_scan_inc; 
 float scan_del_intv; 
 short scan_xnum; 
 short scan_ynum; 
 
 // I'm not sure what this does, it is saved together with the scan 
direction for each buff 
 short retrace_num_average; 
 
 // Scan line delay constants 
 float delay_before_next_scan_line; 
 float delay_after_i_and_v_setting; 
 
 // Total scan time 
 float scantime; 
 
 // Calibration and vernier settings 
 float xcal; 
 float ycal; 
 float zcal; 
 float xver; 
 float yver; 
 float zver; 
 
 scanvars_type() 
 { 
  jj_z_gain = (float)3.35; 
 } 
}; 
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struct buffdata { 
 short active;    // Buffer active flag 
 float voltage1;    // Lower rail voltage 
 float voltage2;    // Upper rail voltage 
 float current;    // Current setpoint 
 short scan_mode;   // Scan mode for each buffer 
 short scan_direction;   // Scan direction (up/down) 
 short image_buffer_data_type; // Data type (0 = integer, 1 = real) 
 float **realdata;   // holds data array if data type = 1, 
else null 
 short **intdata;   // holds data array if data type = 0, 
else null 
 
 // Plane fit parameters for each buffer 
 short valid_plane; 
 short plane_sub; 
 short line_by_line_sub; 
 float a23; 
 float a24; 
 float a25; 
 short pl_avg; 
 float plane_x_len; 
 short plane_xpts; 
 float plane_angle; 
 
 buffdata() 
 { 
  realdata = NULL; 
  intdata = NULL; 
 } 
}; 
 
 
class stmfile 
{ 
public: 
 stmfile(char *file); 
 ~stmfile(); 
 int is_valid; 
 char *filename; 
 short num_buffers; 
 short display_buffer; 
 char *keyword; 
 globalvars_type globalvars; 
 buffdata *buffer_data; 
 heatvars_type heatvars; 
 colormap_arr_type colormap_arr; 
 messagebox_type messagebox; 
 scanvars_type scanvars; 
 stsvars_type stsvars; 
 citsvars_type citsvars; 
private: 
 int i,j,k,x,y,ec; 
 int spc; 
}; 
 
stmfile::stmfile(char *file) 
{ 
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 is_valid = 1; 
 keyword = new char[8]; 
 filename = new char[strlen(file)+1]; 
 strcpy_s(filename, strlen(file)+1, file); 
 buffer_data = NULL; 
 heatvars.heat_cal_current = NULL; 
 heatvars.heat_cal_temperature = NULL; 
 colormap_arr.maps = NULL; 
 messagebox.message_lines = NULL; 
 // Check the number of arguments to verify that we have 
 // all the information that we need. 
 // Open specified file for reading 
 if(fopen_s(&fp, file, "rb")!=0) 
 { 
  perror(file); 
  is_valid = 0; 
  exit(1); 
 } 
 
 ec=1; 
 if(!parsestring(stdout,globalvars.rev_lab,"REV_LAB",40,ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parsekeyword(stdout,keyword,ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parsestring(stdout,globalvars.samp_lab,"SAMP_LAB",80,ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parseshort(stdout,&globalvars.year,"YEAR",ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parseshort(stdout,&globalvars.month,"MONTH",ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parseshort(stdout,&globalvars.day,"DAY",ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parseshort(stdout,&globalvars.hour,"HOUR",ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parseshort(stdout,&globalvars.minute,"MINUTE",ec++)) 
  {is_valid = 0;exit(1);} 
 if(!parseshort(stdout,&globalvars.second,"SECOND",ec++)) 
  {is_valid = 0;exit(1);} 
 
 while(strncmp(keyword,"EOF     ",8)!=0 && !feof(fp)) 
 { 
         if(!parsekeyword(stdout,keyword,ec++)) 
                 {is_valid = 0;exit(1);} 
  if(strncmp(keyword,"ATODSIGN",8)==0) 
  { 
   //printf("switch ATODSIGN\n"); 
   globalvars.atodsign = 1; 
  } 
 
  else if(strncmp(keyword,"HEATCAL ",8)==0) 
  { 
   //printf("switch heatcal\n"); 
  
 if(!parsestring(NULL,heatvars.heat_cal_data_filename,"HEAT_CAL_DATA_FILENAM
E",60,ec++)) {is_valid = 0;exit(1);} 
  
 if(!parsestring(NULL,heatvars.heat_cal_data_label,"HEAT_CAL_DATA_LABEL",60,
ec++)) {is_valid = 0;exit(1);} 
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 if(!parseshort(stdout,&heatvars.heat_cal_num_points,"HEAT_CAL_NUM_POINTS",e
c++)) {is_valid = 0;exit(1);} 
   heatvars.heat_cal_current = new 
float[heatvars.heat_cal_num_points]; 
   heatvars.heat_cal_temperature = new 
float[heatvars.heat_cal_num_points]; 
   for(i=0;i<heatvars.heat_cal_num_points;i++) 
   { 
   
 if(!parsefloat(stdout,&heatvars.heat_cal_current[i],"HEAT_CAL_CURRENT",ec++
)) {is_valid = 0;exit(1);} 
   
 if(!parsefloat(stdout,&heatvars.heat_cal_temperature[i],"HEAT_CAL_TEMPERATU
RE",ec++)) {is_valid = 0;exit(1);} 
   } 
  
 if(!parsefloat(stdout,&heatvars.heat_cal_slope,"HEAT_CAL_SLOPE",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&heatvars.heat_cal_intercept,"HEAT_CAL_intercept",ec+
+)) {is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&heatvars.heat_cal_correlation,"HEAT_CAL_correlation"
,ec++)) {is_valid = 0;exit(1);} 
  
 if(!parseshort(stdout,&heatvars.heat_cal_valid_regression,"HEAT_CAL_VALID_R
EGRESSION",ec++)) {is_valid = 0;exit(1);} 
  } 
  else if(strncmp(keyword,"REVISION",8)==0) 
  { 
   //printf("switch revision\n"); 
  
 if(!parsestring(NULL,globalvars.stm_revision_label,"STM_REVISION_LABEL",40,
ec++)) {is_valid = 0;exit(1);} 
  
 if(!parseshort(stdout,&globalvars.stm_revision_year,"STM_REVISION_YEAR",ec+
+)) {is_valid = 0;exit(1);} 
  
 if(!parseshort(stdout,&globalvars.stm_revision_month,"STM_REVISION_MONTH",e
c++)) {is_valid = 0;exit(1);} 
  
 if(!parseshort(stdout,&globalvars.stm_revision_day,"STM_REVISION_DAY",ec++)
) {is_valid = 0;exit(1);} 
  
 if(!parseshort(stdout,&globalvars.stm_revision_hour,"STM_REVISION_HOUR",ec+
+)) {is_valid = 0;exit(1);} 
  
 if(!parseshort(stdout,&globalvars.stm_revision_minute,"STM_REVISION_MINUTE"
,ec++)) {is_valid = 0;exit(1);} 
  } 
                else if(strncmp(keyword,"BUFF_0  ",8)==0) 
                { 
                        //printf("switch buff_0\n"); 
                        if(!parseshort(stdout,&num_buffers,"NUM_BUFFERS",ec++)) 
{is_valid = 0;exit(1);} 
   buffer_data = new buffdata[num_buffers]; 
                } 
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                else if(strncmp(keyword,"BUFF_1  ",8)==0) // Display buffer, 
scan buffer voltages, currents and flags 
                { 
                        //printf("switch buff_1\n"); 
                        
if(!parseshort(stdout,&display_buffer,"DISPLAY_BUFFER",ec++)) {is_valid = 
0;exit(1);} 
   for(i=0;i<num_buffers;i++) 
   { 
   
 if(!parseshort(stdout,&(buffer_data[i].active),"SCAN_BUFFER_ACTIVE",ec++)) 
{is_valid = 0;exit(1);} 
   
 if(!parsefloat(stdout,&(buffer_data[i].voltage1),"VSCAN_1",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parsefloat(stdout,&(buffer_data[i].current),"ISCAN",ec++)) {is_valid = 
0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"BUFF_2  ",8)==0) // Upper rail 
voltage buffer 
                { 
                        //printf("switch buff_2\n"); 
                        for(i=0;i<num_buffers;i++) 
                        { 
                                
if(!parsefloat(stdout,&(buffer_data[i].voltage2),"VSCAN_2",ec++)) {is_valid = 
0;exit(1);} 
                        } 
                } 
                else if(strncmp(keyword,"NANO_1  ",8)==0)  // Nanolithography data 
                { 
                        //printf("switch NANO_1\n"); 
                } 
                else if(strncmp(keyword,"C_MAPS_1",8)==0)  // Color map data 
                { 
                        //printf("switch c_maps_1\n"); 
  
 if(!parseshort(stdout,&colormap_arr.num_colormaps,"NUMCMAPS",ec++)) 
{is_valid = 0;exit(1);} 
   colormap_arr.maps = new 
colormap_type[colormap_arr.num_colormaps]; 
   for(i=0;i<colormap_arr.num_colormaps;i++) 
   { 
   
 if(!parsefloat(stdout,&colormap_arr.maps[i].h_min,"H_MIN",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parsefloat(stdout,&colormap_arr.maps[i].h_max,"H_MAX",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parsefloat(stdout,&colormap_arr.maps[i].s_min,"S_MIN",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parsefloat(stdout,&colormap_arr.maps[i].s_max,"S_MAX",ec++)) {is_valid 
= 0;exit(1);} 
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 if(!parsefloat(stdout,&colormap_arr.maps[i].i_min,"I_MIN",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parsefloat(stdout,&colormap_arr.maps[i].i_max,"I_MAX",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parseshort(stdout,&colormap_arr.maps[i].n_min,"N_MIN",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parseshort(stdout,&colormap_arr.maps[i].n_max,"N_MAX",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parseshort(stdout,&colormap_arr.maps[i].d_min,"D_MIN",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parseshort(stdout,&colormap_arr.maps[i].d_max,"D_MAX",ec++)) {is_valid 
= 0;exit(1);} 
   
 if(!parsefloat(stdout,&colormap_arr.maps[i].dp_min,"DP_MIN",ec++)) 
{is_valid = 0;exit(1);} 
   
 if(!parsefloat(stdout,&colormap_arr.maps[i].dp_max,"DP_MAX",ec++)) 
{is_valid = 0;exit(1);} 
   
 if(!parseshort(stdout,&colormap_arr.maps[i].dpr_min,"DPR_MIN",ec++)) 
{is_valid = 0;exit(1);} 
   
 if(!parseshort(stdout,&colormap_arr.maps[i].dpr_max,"DPR_MAX",ec++)) 
{is_valid = 0;exit(1);} 
   
 if(!parseshort(stdout,&colormap_arr.maps[i].col_fit_type,"COL_FIT_TYPE",ec+
+)) {is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"DSP     ",8)==0)  // DSP and Keithley 
usage flags 
                { 
                        //printf("switch DSP\n"); 
   if(!parseshort(stdout,&globalvars.usedsp,"USEDSP",ec++)) 
{is_valid = 0;exit(1);} 
   if(globalvars.usedsp) 
   { 
    globalvars.dtoa_max_value = 32767; 
   } 
   else 
   { 
    globalvars.dtoa_max_value = 4095; 
   } 
  
 if(!parseshort(stdout,&globalvars.usekeithley,"USEKEITHLEY",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"ID      ",8)==0)  // STM and electronics 
ID numbers 
                { 
                        //printf("switch ID\n"); 
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   if(!parsestring(NULL,globalvars.stm_id,"STM_ID",16,ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsestring(NULL,globalvars.stm_electronics,"STM_ELECTRONICS",16,ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"MESSG   ",8)==0)  // Message box data 
                { 
                        //printf("switch MESSG\n"); 
  
 if(!parseshort(stdout,&messagebox.num_message_lines,"MESSG_LINES",ec++)) 
{is_valid = 0;exit(1);} 
   messagebox.message_lines = new 
char*[messagebox.num_message_lines]; 
   for(i=0;i<messagebox.num_message_lines;i++) 
   { 
    messagebox.message_lines[i] = new char[60]; 
   
 if(!parsestring(stdout,messagebox.message_lines[i],"MESSG",60,ec++)) 
{is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"I_V_T   ",8)==0)  // IVT parameters 
                { 
                        //printf("switch I_V_T\n"); 
                        if(!parsefloat(stdout,&globalvars.iscan,"ISCAN",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&globalvars.vscan,"VSCAN",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&globalvars.tsamp,"TSAMP",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"SCAN    ",8)==0)  // Scanning parameters 
                { 
                        //printf("switch SCAN\n"); 
                        
if(!parseshort(stdout,&scanvars.scan_mode,"SCANMODE",ec++)) {is_valid = 
0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.xst,"XST",ec++)) {is_valid 
= 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.xfin,"XFIN",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.xinc,"XINC",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.x_ofset,"X_OFSET",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.yst,"YST",ec++)) {is_valid 
= 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.yfin,"YFIN",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.yinc,"YINC",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.y_ofset,"Y_OFSET",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.scnxin,"SCNXIN",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.scnyin,"SCNYIN",ec++)) 
{is_valid = 0;exit(1);} 
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                        if(!parsefloat(stdout,&scanvars.theta,"THETA",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parsefloat(stdout,&scanvars.scan_del,"SCAN_DEL",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.scan_ad_check,"SCAN_AD_CHECK",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.scan_up_dwn,"SCAN_UP_DOWN",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.scanning_up,"SCANNING_UP",ec++)) {is_valid = 
0;exit(1);} 
                        if(!parseshort(stdout,&scanvars.nsampl,"NSAMPL",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parseshort(stdout,&scanvars.nscans,"NSCANS",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parseshort(stdout,&scanvars.xnum,"XNUM",ec++)) 
{is_valid = 0;exit(1);} 
                        if(!parseshort(stdout,&scanvars.ynum,"YNUM",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"SCAN_1  ",8)==0)  // VARIABLE SPEED 
SCANNING PARAMETERS 
                { 
                        //printf("switch SCAN_1\n"); 
                        
if(!parsefloat(stdout,&scanvars.topo_ad_delay,"TOPO_AD_DELAY",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.ad_max_change,"AD_MAX_CHANGE",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.max_num_ad_check,"MAX_NUM_AD_CHECK",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"SCAN_2  ",8)==0)  // SUB-INTERVAL 
SCANNING VARIABLES 
                { 
                        //printf("switch SCAN_2\n"); 
                        
if(!parseshort(stdout,&scanvars.use_scan_inc,"USE_SCAN_INC",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parsefloat(stdout,&scanvars.scan_del_intv,"SCAN_DEL_INTV",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.scan_xnum,"SCAN_XNUM",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.scan_ynum,"SCAN_YNUM",ec++)) {is_valid = 
0;exit(1);} 
                } 
                else if(strncmp(keyword,"S_MODE_1",8)==0)  // SCAN MODES FOR ALL 
IMAGE BUFFERS 
                { 
                        //printf("switch S_MODE_1\n"); 
   for(i=0;i<num_buffers;i++) 
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if(!parseshort(stdout,&buffer_data[i].scan_mode,"SCAN_MODE",ec++)) {is_valid = 
0;exit(1);} 
                } 
                else if(strncmp(keyword,"SCAN_3  ",8)==0)  // SCAN DIRECTIONS FOR 
ALL IMAGE BUFFERS 
                { 
                        //printf("switch SCAN_3\n"); 
   for(i=0;i<num_buffers;i++) 
                         
if(!parseshort(stdout,&buffer_data[i].scan_direction,"SCAN_DIRECTION",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&scanvars.retrace_num_average,"RETRACE_NUM_AVERAGE",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"SCAN_4  ",8)==0)  // SCAN LINE DELAY 
CONSTANTS 
                { 
                        //printf("switch SCAN_4\n"); 
                        
if(!parsefloat(stdout,&scanvars.delay_before_next_scan_line,"DELAY_BEFORE_NEXT_SCA
N_LINE",ec++)) {is_valid = 0;exit(1);} 
                        
if(!parsefloat(stdout,&scanvars.delay_after_i_and_v_setting,"DELAY_AFTER_I_AND_V_S
ETTING",ec++)) {is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"SCAN_5  ",8)==0)  // IMAGE BUFFER DATA 
TYPE FOR ALL IMAGE BUFFERS (OLD VERSION) 
                { 
                        //printf("switch SCAN_5\n"); 
   for(i=0;i<num_buffers;i++) 
   { 
   
 if(!parseshort(stdout,&buffer_data[i].image_buffer_data_type,"IMAGE_BUFFER_
DATA_TYPE",ec++)) {is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"SCAN_5A ",8)==0)  // IMAGE BUFFER DATA 
TYPE FOR ALL IMAGE BUFFERS 
                { 
                        //printf("switch SCAN_5A\n"); 
   for(i=0;i<num_buffers;i++) 
   { 
   
 if(!parseshort(stdout,&(buffer_data[i].image_buffer_data_type),"IMAGE_BUFFE
R_DATA_TYPE",ec++)) {is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"SCAN_6  ",8)==0)  // TOTAL SCAN TIME 
                { 
                        //printf("switch SCAN_6\n"); 
  
 if(!parsefloat(stdout,&scanvars.scantime,"ELAPSED_SCAN_TIME",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"PLANE_2 ",8)==0)  // PLANE FIT PARAMETERS 
FOR EACH BUFFER 
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                { 
                        //printf("switch PLANE_2\n"); 
   for(i=0;i<num_buffers;i++) 
   { 
             
if(!parseshort(stdout,&buffer_data[i].valid_plane,"VALID_PLANE",ec++)) {is_valid = 
0;exit(1);} 
             
if(!parseshort(stdout,&buffer_data[i].plane_sub,"PLANE_SUB",ec++)) {is_valid = 
0;exit(1);} 
             
if(!parseshort(stdout,&buffer_data[i].line_by_line_sub,"LINE_BY_LINE_SUB",ec++)) 
{is_valid = 0;exit(1);} 
    if(!parsefloat(stdout,&buffer_data[i].a23,"A23",ec++)) 
{is_valid = 0;exit(1);} 
    if(!parsefloat(stdout,&buffer_data[i].a24,"A24",ec++)) 
{is_valid = 0;exit(1);} 
    if(!parsefloat(stdout,&buffer_data[i].a25,"A25",ec++)) 
{is_valid = 0;exit(1);} 
             if(!parseshort(stdout,&buffer_data[i].pl_avg,"PL_AVG",ec++)) 
{is_valid = 0;exit(1);} 
   
 if(!parsefloat(stdout,&buffer_data[i].plane_x_len,"PLANE_X_LEN",ec++)) 
{is_valid = 0;exit(1);} 
          
if(!parseshort(stdout,&buffer_data[i].plane_xpts,"PLANE_XPTS",ec++)) {is_valid = 
0;exit(1);} 
   
 if(!parsefloat(stdout,&buffer_data[i].plane_angle,"PLANE_ANGLE",ec++)) 
{is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"CAL     ",8)==0)  // CALIBRATION AND 
VERNIER SETTINGS 
                { 
                        //printf("switch CAL\n"); 
   if(!parsefloat(stdout,&scanvars.xcal,"XCAL",ec++)) {is_valid = 
0;exit(1);} 
   if(!parsefloat(stdout,&scanvars.ycal,"YCAL",ec++)) {is_valid = 
0;exit(1);} 
   if(!parsefloat(stdout,&scanvars.zcal,"ZCAL",ec++)) {is_valid = 
0;exit(1);} 
   if(!parsefloat(stdout,&scanvars.xver,"XVER",ec++)) {is_valid = 
0;exit(1);} 
   if(!parsefloat(stdout,&scanvars.yver,"YVER",ec++)) {is_valid = 
0;exit(1);} 
   if(!parsefloat(stdout,&scanvars.zver,"ZVER",ec++)) {is_valid = 
0;exit(1);} 
                } 
                else if(strncmp(keyword,"GAIN_1  ",8)==0)  // GAIN FACTORS AND 
AMPLIFIER (LIN/LOG) TYPE 
                { 
                        //printf("switch GAIN_1\n"); 
   if(!parsefloat(stdout,&globalvars.cur_gain,"CUR_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&globalvars.hv_gain,"HV_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
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   if(!parsefloat(stdout,&globalvars.amplif,"AMPLIF",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"ATOD    ",8)==0)  // A/D CONVERTOR 
VARIABLES 
                { 
                        //printf("switch ATOD\n"); 
  
 if(!parsefloat(stdout,&globalvars.top_ad_ver,"TOP_AD_VER",ec++)) {is_valid 
= 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.top_ad_max_gain,"TOP_AD_MAX_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
   globalvars.top_ad_gain = (float)1.0 + 
(globalvars.top_ad_ver/(float)10.0)*globalvars.top_ad_max_gain; 
  
 if(!parsefloat(stdout,&globalvars.cur_ad_ver,"CUR_AD_VER",ec++)) {is_valid 
= 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.cur_ad_gain,"CUR_AD_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.err_ad_ver,"ERR_AD_VER",ec++)) {is_valid 
= 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.err_ad_gain,"ERR_AD_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.lock_ad_ver,"LOCK_AD_VER",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.lock_ad_gain,"LOCK_AD_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"ELEC1   ",8)==0)  // FOR NEW ELECTRONICS 
WRITE ADDITIONAL VARIABLES 
                { 
                        //printf("switch ELEC1\n"); 
   if(!parsefloat(stdout,&globalvars.prop_gain,"PROP_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&globalvars.intg_gain,"INTG_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&globalvars.der_gain,"DER_GAIN",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.atod1_gain,"ATOD1_GAIN",ec++)) {is_valid 
= 0;exit(1);} 
  
 if(!parsefloat(stdout,&globalvars.atod2_gain,"ATOD2_GAIN",ec++)) {is_valid 
= 0;exit(1);} 
                 
if(!parseshort(stdout,&globalvars.atod1_chanl,"ATOD1_CHANL",ec++)) {is_valid = 
0;exit(1);} 
                 
if(!parseshort(stdout,&globalvars.atod2_chanl,"ATOD2_CHANL",ec++)) {is_valid = 
0;exit(1);} 
                } 



188 

 

                else if(strncmp(keyword,"FLAG    ",8)==0)  // FLAGS USED TO 
INDICATE VARIOUS THINGS 
                { 
                        //printf("switch FLAG\n"); 
                        
if(!parseshort(stdout,&stsvars.valid_spec,"VALID_SPEC",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&globalvars.bias_to_probe,"BIAS_TO_PROBE",ec++)) {is_valid = 
0;exit(1);} 
                        if(!parseshort(stdout,&citsvars.cits_on,"CITS_ON",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"FLAG_1  ",8)==0)  // FLAG SPECIFYING 
WHETHER OR NOT THERE IS VALID CITS DATA 
                { 
                        //printf("switch FLAG_1\n"); 
      //printf(“The .t.r.e.a.s.u.r.e. is in …\n"); 
                        
if(!parseshort(stdout,&citsvars.valid_cits,"VALID_CITS",ec++)) {is_valid = 
0;exit(1);} 
                } 
                else if(strncmp(keyword,"SPEC_M1 ",8)==0)  // SPECTROSCOPY DATA 
                { 
                        //printf("switch SPEC_M1\n"); 
                        
if(!parseshort(stdout,&stsvars.spec_num_blocks,"SPEC_NUM_BLOCKS",ec++)) {is_valid 
= 0;exit(1);} 
  
 if(!parsefloat(stdout,&stsvars.spec_array_offset,"SPEC_ARRAY_OFFSET",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&stsvars.spec_max_points_per_spec,"SPEC_MAX_POINTS_PER_SPEC"
,ec++)) {is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&stsvars.spec_max_spec_per_coord,"SPEC_MAX_SPEC_PER_COORD",e
c++)) {is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&stsvars.spec_max_num_spec,"SPEC_MAX_NUM_SPEC",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&stsvars.spec_active_block,"SPEC_ACTIVE_BLOCK",ec++)) 
{is_valid = 0;exit(1);} 
   if(stsvars.spec_num_blocks>0) 
    stsvars.stsblocks = new 
stsblock_type[stsvars.spec_num_blocks]; 
   for(i=0;i<stsvars.spec_num_blocks;i++) 
   { 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_block_data_type,"SPEC_BLOC
K_DATA_TYPE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsestring(stdout,stsvars.stsblocks[i].spec_block_label,"SPEC_BLOCK_LA
BEL",80,ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_mode,"SPEC_MODE",ec++)) 
{is_valid = 0;exit(1);} 
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 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_num_spec,"SPEC_NUM_SPEC",e
c++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_pt_per_spec,"SPEC_PT_PER_S
PEC",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_avg_num_spec,"SPEC_AVG_NUM
_SPEC",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_hex_num_spec,"SPEC_HEX_NUM
_SPEC",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_x_num_spec,"SPEC_X_NUM_SPE
C",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_y_num_spec,"SPEC_Y_NUM_SPE
C",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_u_num_spec,"SPEC_U_NUM_SPE
C",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_spread_type,"SPEC_SPREAD_T
YPE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_lead_pts,"SPEC_LEAD_PTS",e
c++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_settle,"SPEC_SETTLE",ec++)
) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_vstrt,"SPEC_VSTRT",ec++)) 
{is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_vfnsh,"SPEC_VFNSH",ec++)) 
{is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_istrt,"SPEC_ISTRT",ec++)) 
{is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_ifnsh,"SPEC_IFNSH",ec++)) 
{is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_pt_del,"SPEC_PT_DEL",ec++)
) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_zstrt,"SPEC_ZSTRT",ec++)) 
{is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_zfnsh,"SPEC_ZFNSH",ec++)) 
{is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_zscan,"SPEC_ZSCAN",ec++)) 
{is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_avg_del,"SPEC_AVG_DEL",ec+
+)) {is_valid = 0;exit(1);} 
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 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_x_spec_inc,"SPEC_X_SPEC_IN
C",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_y_spec_inc,"SPEC_Y_SPEC_IN
C",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_r_x_cen,"SPEC_R_X_CEN",ec+
+)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_r_y_cen,"SPEC_R_Y_CEN",ec+
+)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_rect_angl,"SPEC_RECT_ANGL"
,ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_u_x_cen,"SPEC_U_X_CEN",ec+
+)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_u_y_cen,"SPEC_U_Y_CEN",ec+
+)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_user_angl,"SPEC_USER_ANGL"
,ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_hex_pt_sep,"SPEC_HEX_PT_SE
P",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_h_x_cen,"SPEC_H_X_CEN",ec+
+)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_h_y_cen,"SPEC_H_Y_CEN",ec+
+)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_hex_angl,"SPEC_HEX_ANGL",e
c++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_lock_in_der,"SPEC_LOCK_IN_
DER",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_lock_in_range,"SPEC_LOCK_I
N_RANGE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_lock_in_tau,"SPEC_LOCK_IN_
TAU",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_dith_ampl,"SPEC_DITH_AMPL"
,ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_dith_freq,"SPEC_DITH_FREQ"
,ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_cusp_index,"SPEC_CUSP_INDE
X",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_lock_in_point_delay,"SPEC_
LOCK_IN_POINT_DELAY",ec++)) {is_valid = 0;exit(1);} 
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 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_lock_in_full_scale_v,"SPEC
_LOCK_IN_FULL_SCALE_V",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_skip_endpoint_ramps,"SPEC_
SKIP_ENDPOINT_RAMPS",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_pt_num_average,"SPEC_PT_NU
M_AVERAGE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_pt_avg_delay,"SPEC_PT_AVG_
DELAY",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_potentiometry,"SPEC_POTENT
IOMETRY",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_potentio_use_samp_intv,"SP
EC_POTENTIO_USE_SAMP_INTV",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_potentio_samp_interval,"SP
EC_POTENTIO_SAMP_INTERVAL",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_potentio_lower_rail_v,"SPE
C_POTENTIO_LOWER_RAIL_V",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_potentio_upper_rail_v,"SPE
C_POTENTIO_UPPER_RAIL_V",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_potentio_lower_rail_fixed,
"SPEC_POTENTIO_LOWER_RAIL_FIXED",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_potentio_upper_rail_fixed,
"SPEC_POTENTIO_UPPER_RAIL_FIXED",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_initial_v_use_scan_value,"
SPEC_INITIAL_V_USE_SCAN_VALUE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_initial_i_use_scan_value,"
SPEC_INITIAL_I_USE_SCAN_VALUE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_initial_trans_together,"SP
EC_INITIAL_TRANS_TOGETHER",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_initial_trans_i_first,"SPE
C_INITIAL_TRANS_I_FIRST",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_initial_v,"SPEC_INITIAL_V"
,ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_initial_v_trans_time,"SPEC
_INITIAL_V_TRANS_TIME",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_initial_i,"SPEC_INITIAL_I"
,ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_initial_i_trans_time,"SPEC
_INITIAL_I_TRANS_TIME",ec++)) {is_valid = 0;exit(1);} 
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 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_cusp_voltage,"SPEC_CUSP_VO
LTAGE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_delay_before_atod,"SPEC_DE
LAY_BEFORE_ATOD",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_set_initial_ds,"SPEC_SET_I
NITIAL_DS",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_initial_ds,"SPEC_INITIAL_D
S",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parsefloat(stdout,&stsvars.stsblocks[i].spec_initial_ds_trans_time,"SPE
C_INITIAL_DS_TRANS_TIME",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_current_channel_0_on,"SPEC
_CURRENT_CHANNEL_0_ON",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_current_channel_1_on,"SPEC
_CURRENT_CHANNEL_1_ON",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_current_channel_2_on,"SPEC
_CURRENT_CHANNEL_2_ON",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_current_channel_3_on,"SPEC
_CURRENT_CHANNEL_3_ON",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_current_average_mode,"SPEC
_CURRENT_AVERAGE_MODE",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_dither_only,"SPEC_DITHER_O
NLY",ec++)) {is_valid = 0;exit(1);} 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].spec_leave_dither_on,"SPEC_LEAV
E_DITHER_ON",ec++)) {is_valid = 0;exit(1);} 
     stsvars.stsblocks[i].cols = new 
short[stsvars.stsblocks[i].spec_num_spec]; 
     stsvars.stsblocks[i].rows = new 
short[stsvars.stsblocks[i].spec_num_spec]; 
     stsvars.stsblocks[i].stsdata = new 
float**[stsvars.stsblocks[i].spec_num_spec]; 
    
 for(j=0;j<stsvars.stsblocks[i].spec_num_spec;j++) 
     { 
      spc = 1; 
     
 if(stsvars.stsblocks[i].spec_potentiometry && 
(stsvars.stsblocks[i].spec_mode==1 || stsvars.stsblocks[i].spec_mode==4)) 
       spc = 2; 
      if(stsvars.stsblocks[i].spec_lock_in_der) 
       spc = 2; 
      stsvars.stsblocks[i].max_spec_per_coord = 
spc; 
      stsvars.stsblocks[i].stsdata[j] = new 
float*[spc]; 
      for(k=0;k<spc;k++) 
      { 
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       stsvars.stsblocks[i].stsdata[j][k] 
= new float[stsvars.stsblocks[i].spec_pt_per_spec]; 
      } 
     } 
   } 
                } 
                else if(strncmp(keyword,"CITS    ",8)==0)  // CITS DATA 
                { 
                        //printf("switch CITS\n"); 
                        
if(!parseshort(stdout,&citsvars.spec_mode,"SPEC_MODE",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_num_buff,"CITS_NUM_BUFF",ec++)) {is_valid = 
0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_oversample_mult,"CITS_OVERSAMPLE_MULT",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&citsvars.spec_vstrt,"SPEC_VSTRT",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&citsvars.spec_vfnsh,"SPEC_VFNSH",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&citsvars.spec_pt_del,"SPEC_PT_DEL",ec++)) {is_valid 
= 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.spec_avg_num_spec,"SPEC_AVG_NUM_SPEC",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&citsvars.spec_avg_del,"SPEC_AVG_DEL",ec++)) 
{is_valid = 0;exit(1);} 
  
 if(!parsefloat(stdout,&citsvars.spec_lock_in_point_delay,"SPEC_LOCK_IN_POIN
T_DELAY",ec++)) {is_valid = 0;exit(1);} 
   citsvars.citsbuffs = new 
citsbuff_type[citsvars.cits_num_buff]; 
   for(i=0;i<citsvars.cits_num_buff;i++) 
   { 
   
 if(!parsefloat(stdout,&citsvars.citsbuffs[i].cits_bias,"CITS_BIAS",ec++)) 
{is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"CITS_1  ",8)==0)  // MORE CITS DATA 
                { 
                        //printf("switch CITS_1\n"); 
                        
if(!parseshort(stdout,&citsvars.spec_dither_only,"SPEC_DITHER_ONLY",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_topo_average,"CITS_TOPO_AVERAGE",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_topo_num_average,"CITS_TOPO_NUM_AVERAGE",ec++
)) {is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_spec_fit,"CITS_SPEC_FIT",ec++)) {is_valid = 
0;exit(1);} 
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if(!parseshort(stdout,&citsvars.cits_spec_fit_pts,"CITS_SPEC_FIT_PTS",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"CITS_2  ",8)==0)  // MORE CITS DATA 
                { 
                        //printf("switch CITS_2\n"); 
                        
if(!parseshort(stdout,&citsvars.cits_num_blocks,"CITS_NUM_BLOCKS",ec++)) {is_valid 
= 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_analysis_block,"CITS_ANALYSIS_BLOCK",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_display_block,"CITS_DISPLAY_BLOCK",ec++)) 
{is_valid = 0;exit(1);} 
   citsvars.citsblocks = new 
citsblock_type[citsvars.cits_num_blocks]; 
   for(i=0;i<citsvars.cits_num_blocks;i++) 
   { 
                         
if(!parseshort(stdout,&citsvars.citsblocks[i].cits_block_mode,"CITS_BLOCK_MODE",ec
++)) {is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"CITS_3  ",8)==0)  // NEW CITS VARIABLES 
FOR ARIOUS SPECTROSCOPY MODES 
                { 
                        //printf("switch CITS_3\n"); 
   if(!parsefloat(stdout,&citsvars.spec_istrt,"SPEC_ISTRT",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&citsvars.spec_ifnsh,"SPEC_IFNSH",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&citsvars.spec_zstrt,"SPEC_ZSTRT",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&citsvars.spec_zfnsh,"SPEC_ZFNSH",ec++)) 
{is_valid = 0;exit(1);} 
   if(!parsefloat(stdout,&citsvars.spec_zscan,"SPEC_ZSCAN",ec++)) 
{is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"CITS_4  ",8)==0)  // NEW CITS VARIABLES 
FOR ARIOUS SPECTROSCOPY MODES 
                { 
                        //printf("switch CITS_4\n"); 
   for(i=0;i<citsvars.cits_num_blocks;i++) 
   { 
                         
if(!parseshort(stdout,&citsvars.citsblocks[i].cits_block_data_type,"CITS_BLOCK_DAT
A_TYPE",ec++)) {is_valid = 0;exit(1);} 
   
 if(!parsestring(stdout,citsvars.citsblocks[i].cits_block_text,"CITS_BLOCK_T
EXT",80,ec++)) {is_valid = 0;exit(1);} 
   } 
                } 
                else if(strncmp(keyword,"CITS_5  ",8)==0)  // CITS TEMPERATURE 
LOGGING VARIABLES AND ARRAY 
                { 
                        //printf("switch CITS_5\n"); 
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if(!parseshort(stdout,&citsvars.cits_log_temperature,"CITS_LOG_TEMPERATURE",ec++)) 
{is_valid = 0;exit(1);} 
   if(citsvars.cits_log_temperature) 
   { 
                         
if(!parseshort(stdout,&citsvars.cits_temperature_pts,"CITS_TEMPERATURE_PTS",ec++)) 
{is_valid = 0;exit(1);} 
                         
if(!parseshort(stdout,&citsvars.cits_temperature_pts,"CITS_TEMPERATURE_ATOD_CHANNE
L",ec++)) {is_valid = 0;exit(1);} 
   
 if(!parsefloat(stdout,&citsvars.cits_temperature_log_interval,"CITS_TEMPERA
TURE_LOG_INTERVAL",ec++)) {is_valid = 0;exit(1);} 
   
 if(!parsefloat(stdout,&citsvars.cits_temperature_log_sampl_dt,"CITS_TEMPERA
TURE_LOG_SAMPL_DT",ec++)) {is_valid = 0;exit(1);} 
   
 if(!parsefloat(stdout,&citsvars.cits_temperature_conv_factor,"CITS_TEMPERAT
URE_CONV_FACTOR",ec++)) {is_valid = 0;exit(1);} 
    if(citsvars.cits_temperature_pts>0) 
    { 
     if(citsvars.cits_temperature_array==NULL) 
      citsvars.cits_temperature_array = new 
char[4*citsvars.cits_temperature_pts]; 
    
 if(!parsestring(NULL,citsvars.cits_temperature_array,"CITS_TEMPERATURE_ARRA
Y",4*citsvars.cits_temperature_pts,ec++)) {is_valid = 0;exit(1);} 
    } 
   } 
                } 
                else if(strncmp(keyword,"CITS_6  ",8)==0)  // CITS RAW DATA 
PROCESSING PARAMETERS 
                { 
                        //printf("switch CITS_6\n"); 
                        
if(!parseshort(stdout,&citsvars.spec_dither_only,"SPEC_DITHER_ONLY",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_topo_average,"CITS_TOPO_AVERAGE",ec++)) 
{is_valid = 0;exit(1);} 
                        
if(!parseshort(stdout,&citsvars.cits_topo_num_average,"CITS_TOPO_NUM_AVERAGE",ec++
)) {is_valid = 0;exit(1);} 
   for(i=0;i<citsvars.cits_num_blocks;i++) 
   { 
                         
if(!parseshort(stdout,&citsvars.citsblocks[i].cits_spec_raw_deglitch,"CITS_SPEC_RA
W_DEGLITCH",ec++)) {is_valid = 0;exit(1);} 
                         
if(!parseshort(stdout,&citsvars.citsblocks[i].cits_spec_raw_glitch_threshold,"CITS
_SPEC_RAW_GLITCH_THRESHOLD",ec++)) {is_valid = 0;exit(1);} 
                         
if(!parseshort(stdout,&citsvars.citsblocks[i].cits_spec_raw_smooth,"CITS_SPEC_RAW_
SMOOTH",ec++)) {is_valid = 0;exit(1);} 
                         
if(!parseshort(stdout,&citsvars.citsblocks[i].cits_spec_raw_smooth_order,"CITS_SPE
C_RAW_SMOOTH_ORDER",ec++)) {is_valid = 0;exit(1);} 
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if(!parseshort(stdout,&citsvars.citsblocks[i].cits_spec_raw_smooth_n_fit,"CITS_SPE
C_RAW_SMOOTH_N_FIT",ec++)) {is_valid = 0;exit(1);} 
   } 
  
 if(!parsestring(NULL,NULL,"CITS_6_BUFF",6+10*citsvars.cits_num_blocks,ec++)
) {is_valid = 0;exit(1);} 
                } 
                else if(strncmp(keyword,"IMG_BUF ",8)==0)  // IMAGE BUFFERS 
                { 
                        //printf("switch IMG_BUF\n"); 
   if(scanvars.xnum<0 || scanvars.ynum<0) 
   { 
    //printf("Parse Error: Required values are not defined 
(xnum, or ynum)\n"); 
    return; 
   } 
   for(i=0;i<num_buffers;i++) 
   { 
    if(buffer_data[i].image_buffer_data_type==0) // Int 
values 
    { 
     buffer_data[i].intdata = new 
short*[scanvars.xnum]; 
     for(j=0;j<scanvars.xnum;j++) 
      buffer_data[i].intdata[j] = new 
short[scanvars.ynum]; 
    } 
    else if(buffer_data[i].image_buffer_data_type==1)
 // Real values 
    { 
     buffer_data[i].realdata = new 
float*[scanvars.xnum]; 
     for(j=0;j<scanvars.xnum;j++) 
      buffer_data[i].realdata[j] = new 
float[scanvars.ynum]; 
    } 
    for(x=0;x<scanvars.xnum;x++) 
    { 
     for(y=0;y<scanvars.ynum;y++) 
     { 
     
 if(buffer_data[i].image_buffer_data_type==0) // Integer values 
      { 
      
 if(!parseshort(NULL,&(buffer_data[i].intdata[y][x]),"zval",ec++)) {is_valid 
= 0;exit(1);} 
      } 
      else 
if(buffer_data[i].image_buffer_data_type==1) // Real values 
      { 
      
 if(!parsefloat(NULL,&(buffer_data[i].realdata[y][x]),"rval",ec++)) 
{is_valid = 0;exit(1);} 
      } 
     } 
    } 
   } 
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   if(citsvars.valid_cits) 
   { 
    for(i=0;i<citsvars.cits_num_blocks;i++) 
    { 
 
                                if(citsvars.citsblocks[i].cits_block_data_type==0)    
// Int values 
                                { 
                                        citsvars.citsblocks[i].intdata = new 
short*[scanvars.xnum]; 
                                        for(j=0;j<scanvars.xnum;j++) 
                                                citsvars.citsblocks[i].intdata[j] 
= new short[scanvars.ynum]; 
                                } 
                                else 
if(citsvars.citsblocks[i].cits_block_data_type==1)       // Real values 
                                { 
                                        citsvars.citsblocks[i].realdata = new 
float*[scanvars.xnum]; 
                                        for(j=0;j<scanvars.xnum;j++) 
                                                citsvars.citsblocks[i].realdata[j] 
= new float[scanvars.ynum]; 
                                } 
                                for(x=0;x<scanvars.xnum;x++) 
                                { 
                                        for(y=0;y<scanvars.ynum;y++) 
                                        { 
                                                
if(citsvars.citsblocks[i].cits_block_data_type==0)    // Integer values 
           
 { 
                                                    
if(!parseshort(NULL,&(citsvars.citsblocks[i].intdata[y][x]),"cits_zval",ec++)) 
{is_valid = 0;exit(1);} 
           
 } 
           
 else if(citsvars.citsblocks[i].cits_block_data_type==1)       // Real 
values 
           
 { 
            
 if(!parsefloat(NULL,&(citsvars.citsblocks[i].realdata[y][x]),"cits_rval",ec
++)) {is_valid = 0;exit(1);} 
           
 } 
           } 
                                } 
 
 
 
    } 
   } 
                } 
                else if(strncmp(keyword,"SPC_MDAT",8)==0)  // OUTPUT 32-BIT 
SPECTROSCOPY DATA 
                { 
                        //printf("switch SPC_MDAT\n"); 
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   for(i=0;i<stsvars.spec_num_blocks;i++) 
   { 
    // Read columns 
    for(j=0;j<stsvars.stsblocks[i].spec_num_spec;j++) 
    { 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].cols[j],"sts_column",ec++)) 
{is_valid = 0;exit(1);} 
    } 
    // Read rows 
    for(j=0;j<stsvars.stsblocks[i].spec_num_spec;j++) 
    { 
    
 if(!parseshort(stdout,&stsvars.stsblocks[i].rows[j],"sts_row",ec++)) 
{is_valid = 0;exit(1);} 
    } 
   } 
   for(i=0;i<stsvars.spec_num_blocks;i++) 
   { 
    for(j=0;j<stsvars.stsblocks[i].spec_num_spec;j++) 
    { 
    
 for(k=0;k<stsvars.stsblocks[i].spec_pt_per_spec;k++) 
     { 
     
 if(!parsefloat(NULL,&stsvars.stsblocks[i].stsdata[j][0][k],"rval",ec++)) 
{is_valid = 0;exit(1);} 
     } 
 
     if(stsvars.stsblocks[i].max_spec_per_coord==2) 
     { 
     
 for(k=0;k<stsvars.stsblocks[i].spec_pt_per_spec;k++) 
      { 
      
 if(!parsefloat(NULL,&stsvars.stsblocks[i].stsdata[j][1][k],"rval",ec++)) 
{is_valid = 0;exit(1);} 
      } 
     } 
    } 
   } 
                } 
 
 
 
  else if(strncmp(keyword,"EOF     ",8)==0) 
  { 
   //printf("switch EOF\n"); 
  } 
  else 
  { 
   //printf("Keyword Parse Error: %s\n", keyword); 
   return; 
  } 
 } 
 
 
 // Close the file 
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 fclose(fp); 
} 
 
stmfile::~stmfile() 
{ 
 if(filename!=NULL) 
  delete [] filename; 
 if(colormap_arr.maps!=NULL) 
  delete [] colormap_arr.maps; 
 if(stsvars.stsblocks!=NULL) 
 { 
  for(i=0;i<stsvars.spec_num_blocks;i++) 
  { 
   if(stsvars.stsblocks[i].cols!=NULL) 
    delete [] stsvars.stsblocks[i].cols; 
   if(stsvars.stsblocks[i].rows!=NULL) 
    delete [] stsvars.stsblocks[i].rows; 
   if(stsvars.stsblocks[i].stsdata!=NULL) 
   { 
    for(k=0;k<stsvars.stsblocks[i].spec_num_spec;k++) 
    { 
    
 for(j=0;j<stsvars.stsblocks[i].max_spec_per_coord;j++) 
     { 
      delete [] 
stsvars.stsblocks[i].stsdata[k][j]; 
     } 
     delete [] stsvars.stsblocks[i].stsdata[k]; 
    } 
    delete [] stsvars.stsblocks[i].stsdata; 
   } 
  } 
  delete [] stsvars.stsblocks; 
 } 
 if(buffer_data!=NULL) 
 { 
  for(i=0;i<num_buffers;i++) 
   if(buffer_data->realdata!=NULL) 
   { 
    for(j=0;j<scanvars.xnum;j++) 
     delete [] (buffer_data->realdata)[j]; 
    delete [] buffer_data->realdata; 
   } 
   if(buffer_data->intdata!=NULL) 
   { 
    for(j=0;j<scanvars.xnum;j++) 
     delete [] (buffer_data->intdata)[j]; 
    delete [] buffer_data->intdata; 
   } 
 } 
 delete [] buffer_data; 
 delete [] keyword; 
} 
 
int parsestring(FILE *out, char *outchar, char *name, int length, int errorcode) 
{ 
 int i,x; 
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#ifdef VERBOSE 
 if(out!=NULL) 
  fprintf(out,"%s: [", name); 
 fflush(out); 
#endif 
 
 for(i=0;i<length;i++) 
 { 
  x = fgetc(fp); 
  if(x==EOF) 
  { 
   return 0; 
  } 
 
  if(outchar!=NULL) 
   outchar[i] = x; 
 
#ifdef VERBOSE 
  if(out!=NULL) 
   fprintf(out,"%c",x); 
#endif 
 } 
#ifdef VERBOSE 
 if(out!=NULL) 
  fprintf(out,"]\n"); 
#endif 
 
 return 1; 
} 
 
int parseshort(FILE *out, short *siout, char *name, int errorcode) 
{ 
 int x; 
 short si; 
 
#ifdef VERBOSE 
 if(out!=NULL) 
  fprintf(out,"%s: [", name); 
#endif 
 
 x = fread(&si,sizeof(short),1,fp);  
 if(x<1) 
 { 
  return 0; 
 } 
 
#ifdef VERBOSE 
 if(out!=NULL) 
 { 
  fprintf(out,"%i",si); 
  fprintf(out,"]\n"); 
 } 
#endif 
 
 if(siout!=NULL) 
  *siout = si; 
 
 return 1; 
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} 
 
int parseint(FILE *out, int *iout, char *name, int errorcode) 
{ 
 int x; 
 int i; 
 
#ifdef VERBOSE 
 if(out!=NULL) 
  fprintf(out,"%s: [", name); 
 fflush(out); 
#endif 
 
 x = fread(&i,sizeof(int),1,fp);  
 if(x<1) 
 { 
  return 0; 
 } 
#ifdef VERBOSE 
 if(out!=NULL) 
 { 
  fprintf(out,"%x",i); 
  fprintf(out,"]\n"); 
 } 
#endif 
 
 if(iout!=NULL) 
  *iout = i; 
 
 return 1; 
} 
 
int parsefloat(FILE *out, float *floatout, char *name, int errorcode) 
{ 
 int x; 
 float i; 
 
 
#ifdef VERBOSE 
 if(out!=NULL) 
  fprintf(out,"%s: [", name); 
 fflush(out); 
#endif 
 
 x = fread(&i,sizeof(float),1,fp);  
 if(x<1) 
 { 
  return 0; 
 } 
#ifdef VERBOSE 
 if(out!=NULL) 
 { 
  fprintf(out,"%E",i); 
  fprintf(out,"]\n"); 
 } 
#endif 
 
 if(floatout!=NULL) 
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  *floatout = i; 
 
 return 1; 
} 
 
int parsekeyword(FILE *out, char *keyword, int errorcode) 
{ 
        int i; 
 
#ifdef VERBOSE 
 if(out!=NULL) 
         fprintf(out,"%KEY_WORD: ["); 
 fflush(out); 
#endif 
 
        for(i=0;i<8;i++) 
        { 
                keyword[i] = fgetc(fp); 
                if(keyword[i]==EOF) 
                { 
                        return 0; 
                } 
#ifdef VERBOSE 
  if(out!=NULL) 
                 fprintf(out,"%c",keyword[i]); 
#endif 
        } 
#ifdef VERBOSE 
 if(out!=NULL) 
         fprintf(out,"]\n"); 
#endif 
 
        return 1; 
} 

 


